Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Running Performance
3.2. Kinematic Parameters
3.3. Physiological Parameters
3.4. Perceptual Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cejuela, R.; Cortell-Tormo, J.M.; Chinchilla-Mira, J.J.; Pérez-Turpin, J.A.; Villa, J.G. Gender differences in elite Olympic distance triathlon performances. JHSE 2012, 7, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Hausswirth, C.; Bigard, A.X.; Berthelot, M.; Thomaïdis, M.; Guezennec, C.Y. Variability in energy cost of running at the end of a triathlon and a marathon. Int. J. Sports Med. 1996, 17, 572–579. [Google Scholar] [CrossRef]
- Hausswirth, C.; Bigard, A.X.; Guezennec, C.Y. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int. J. Sports Med. 1997, 18, 330–339. [Google Scholar] [CrossRef]
- Gottschall, J.; Palmer, B. Acute Effects of Cycling on Running Step Length and Step Frequency. J. Strength Cond. Res. 2000, 14, 97–101. [Google Scholar]
- Hausswirth, C.; Lehénaff, D. Physiological demands of running during long distance runs and triathlons. Sports Med. 2001, 31, 679–689. [Google Scholar] [CrossRef]
- Landers, G.J.; Blanksby, B.A.; Rackland, T. Cadence, Stride Rate and Stride Length during Triathlon Competition. Int. J. Exerc. Sci. 2011, 4, 40–48. [Google Scholar]
- Hue, O.; Le Gallais, D.; Chollet, D.; Boussana, A.; Préfaut, C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Doust, J.H.; Ball, D.; Jones, A.M. Effects of prior heavy exercise on VO2 kinetics during heavy exercise are related to changes in muscle activity. J. Appl. Physiol. 2002, 93, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.J.; Evans, E.M.; Arngrimsson, S.A.; Allison, J.D.; Warren, G.L.; Cureton, K.J. Muscle activation and the slow component rise in oxygen uptake during cycling. Med. Sci. Sports Exerc. 2000, 32, 2040–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, D.J.; Millet, G.P.; Vleck, V.E.; McNaughton, L.R. Specific aspects of contemporary triathlon: Implications for physiological analysis and performance. Sports Med. 2002, 32, 345–359. [Google Scholar] [CrossRef]
- Guezennec, C.Y.; Vallier, J.M.; Bigard, A.X.; Durey, A. Increase in energy cost of running at the end of a triathlon. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.A.; Stamenkovic, A.; Lepers, R.; Peoples, G.; Stapley, P.J. Neuromuscular and physiological variables evolve independently when running immediately after cycling. J. Electromyogr. Kinesiol. 2015, 25, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Millet, G.P.; Millet, G.Y.; Hofmann, M.D.; Candau, R.B. Alterations in running economy and mechanics after maximal cycling in triathletes: Influence of performance level. Int. J. Sports Med. 2000, 21, 127–132. [Google Scholar] [CrossRef]
- Yoshida, T.; Kamiya, J.; Hishimoto, K. Are oxygen uptake kinetics at the onset of exercise speeded up by local metabolic status in active muscles? Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Bentley, D.J. The physiological responses to running after cycling in elite junior and senior triathletes. Int. J. Sports Med. 2004, 25, 191–197. [Google Scholar] [PubMed]
- Schabort, E.J.; Killian, S.C.; St Clair Gibson, A.; Hawley, J.A.; Noakes, T.D. Prediction of triathlon race time from laboratory testing in national triathletes. Med. Sci. Sports Exerc. 2000, 32, 844–849. [Google Scholar] [CrossRef]
- Zhou, S.; Robson, S.J.; King, M.J.; Davie, A.J. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J. Sports Med. Phys. Fit. 1997, 37, 122–130. [Google Scholar]
- Perrey, S.; Ferrari, M. Muscle oximetry in sports science: A systematic review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- Steimers, A.; Vafiadou, M.; Koukourakis, G.; Geraskin, D.; Neary, P.; Kohl-Bareis, M. Muscle Oxygenation During Running Assessed by Broad Band NIRS. Adv. Exp. Med. Biol. 2016, 876, 41–47. [Google Scholar]
- Skovereng, K.; Ettema, G.; van Beekvelt, M.C.P. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: The effect of cadence at a constant external work rate. Eur. J. Appl. Physiol. 2016, 116, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Skovereng, K.; Ettema, G.; van Beekvelt, M. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics. PLoS ONE 2017, 12, 1–13. [Google Scholar] [CrossRef]
- Oueslati, F.; Boone, J.; Ahmaidi, S. Respiratory muscle endurance, oxygen saturation index in vastus lateralis and performance during heavy exercise. Respir. Physiol. Neurobiol. 2016, 227, 41–47. [Google Scholar] [CrossRef]
- Bortolotti, H.; Pasquarelli, B.N.; Soares-Caldeira, L.F.; Altimari, L.R.; Nakamura, F.Y. Repeated sprint ability evaluation in soccer. Mot. Rev. De Educ. Fis. 2010, 16, 1006–1012. [Google Scholar]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef]
- McManus, C.J.; Collison, J.; Cooper, C.E. Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise. J. Biomed. Opt. 2018, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T. Assessment of performance team games. In Kinanthropometry and Exercise Physiology Lab Manual: Tests, Procedures, and Data; Eston, R., Reilly, T., Eds.; Routledge: New York, NY, USA, 2001; pp. 171–182. [Google Scholar]
- Cooper, K.H. A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA 1968, 203, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Safrit, M.J.; Glaucia-Costa, M.; Hooper, L.M.; Patterson, P.; Ehlert, S.A. The validity generalization of distance run tests. Can. J. Sport Sci. 1988, 13, 188–196. [Google Scholar]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; Rrench, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63, 240–252. [Google Scholar]
- Adams, D.; Pozzi, F.; Carroll, A.; Rombach, A.; Zeni, J. Validity and reliability of a commercial fitness watch for measuring running dynamics. J. Orthop. Sports Phys. Ther. 2016, 46, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Vaile, J.M.; Gill, N.D.; Blazevich, A.J. The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J. Strength Cond. Res. 2007, 21, 697–702. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Psychology Press: New York, NY, USA, 2009. [Google Scholar]
- Rüst, C.A.; Lepers, R.; Stiefel, M.; Rosemann, T.; Knechtle, B. Performance in Olympic triathlon: Changes in performance of elite female and male triathletes in the ITU World Triathlon Series from 2009 to 2012. SpringerPlus 2013, 2, 685. [Google Scholar] [CrossRef]
- Beneke, R.; Hütler, M.; Leithäuser, R.M. Maximal lactate-steady-state independent of performance. Med. Sci. Sports Exerc. 2000, 32, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Paavolainen, L.; Nummela, A.; Rusko, H.; Häkkinen, K. Neuromuscular characteristics and fatigue during 10 km running. Int. J. Sports Med. 1999, 20, 516–521. [Google Scholar] [CrossRef]
- Bernard, T.; Vercruyssen, F.; Grego, F.; Hausswirth, C.; Lepers, R.; Vailler, J.-M.; Brisswalter, J. Effect of cycling cadence on subsequent 3 km running performance in well trained triahtletes. Br. J. Sports Med. 2003, 37, 154–159. [Google Scholar] [CrossRef]
- Hopker, J.G.; O’Grady, C.; Pageaux, B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand. J. Med. Sci. Sports 2017, 27, 408–417. [Google Scholar] [CrossRef]
- Millet, G.P.; Vleck, V.E. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: Review and practical recommendations for training. Br. J. Sports Med. 2000, 34, 384–390. [Google Scholar] [CrossRef]
- Tew, G. The effect of cycling cadence on subsequent 10 km running performance in well-trained triahtletes. J. Sports Sci. Med. 2005, 4, 342–353. [Google Scholar]
- Díaz, V.; Peinado, A.B.; Vleck, V.E.; Alvarez-Sánchez, M.; Benito, P.J.; Alves, F.B.; Calderon, F.J.; Zapico, A.G. Longitudinal Changes in Response to a Cycle-Run Field Test of Young Male National “Talent identification” and Senior Elite Triathlon Squads. J. Strength Cond. Res. 2012, 26, 2209–2219. [Google Scholar] [CrossRef] [Green Version]
- Leberman, D.E.; Warrener, A.G.; Wrang, J.; Castillo, E.R. Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. J. Exp. Biol. 2015, 218, 3406–3414. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Laursen, P.B.; Ahmaidi, S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. J. Appl. Physiol. 2009, 107, 460–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Born, D.-P.; Stöggl, T.; Swarén, M.; Björklund, G. Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. Int. J. Sports Physiol. Perform. 2017, 12, 440–447. [Google Scholar] [CrossRef] [PubMed]
Variables | BRT |
---|---|
Relative power (w/kg) | 3.4 ± 0.4 |
Cadence (revolutions per min) | 95.8 ± 7.4 |
HR average (bpm) | 162 ± 12.8 |
HR peak (bpm) | 175 ± 12.7 |
RPE (units) | 16.5 ± 2.5 |
VAS pain 0–10 (units) | 5.9 ± 2.1 |
Variables | IRT | BRT | % (CL 90%) | ES (CL 90%) | p-Value |
---|---|---|---|---|---|
12-min run (m) | 3345 ± 306 | 3150 ± 296 | −5.8 (−8.2 to −3.4) | 0.6 (0.3 to 0.8) | 0.00 |
Cadence (step per min) | 178 ± 8.5 | 177 ± 8.8 | −0.3 (−2.6 to 2.0) | 0.0 (−0.3 to 0.4) | 0.81 |
Vertical Oscillation (cm) | 9.5 ± 1.3 | 9.7 ± 1.3 | 2.1 (−1.9 to 6.3) | 0.1 (−0.4 to 0.1) | 0.34 |
Ground contact time (ms) | 206± 16.6 | 209 ± 19.2 | 1.6 (−0.1 to 3.2) | 0.1 (0.0 0.3) | 0.12 |
Stride Length (m) | 1.64 ± 0.11 | 1.52 ± 0.11 | −4.2 (−6.2 to −2.1) | 0.4 (0.1 to 0.5) | 0.00 |
SmO2 average (%) | 41.5 ± 6.4 | 55.1 ± 3.3 | 35.7 (22.7 to 46.4) | 1.63 (1.16 to 2.26) | 0.00 |
HR average (bpm) | 175 ± 11.0 | 173 ± 10.5 | −0.9 (−1.7 to 0.0) | 0.1 (0.0 to 0.2) | 0.09 |
HR peak (bpm) | 184 ± 12.2 | 181 ± 11.3 | −1.7 (−2.6 to −0.9) | 0.2 (0.1 to 0.3) | 0.00 |
RPE (units) | 17.4 ± 1.8 | 17.2 ± 1.7 | −1.1 (−9.3 to 7.9) | 0.0 (−0.6 to 0.8) | 0.80 |
VAS pain 0–10 (units) | 5.4 ± 2.7 | 6.2 ± 2.1 | 22.6 (−1.8 to 53.1) | 0.3 (0.0 to 0.7) | 0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olcina, G.; Perez-Sousa, M.Á.; Escobar-Alvarez, J.A.; Timón, R. Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports 2019, 7, 115. https://doi.org/10.3390/sports7050115
Olcina G, Perez-Sousa MÁ, Escobar-Alvarez JA, Timón R. Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports. 2019; 7(5):115. https://doi.org/10.3390/sports7050115
Chicago/Turabian StyleOlcina, Guillermo, Miguel Ángel Perez-Sousa, Juan Antonio Escobar-Alvarez, and Rafael Timón. 2019. "Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes" Sports 7, no. 5: 115. https://doi.org/10.3390/sports7050115
APA StyleOlcina, G., Perez-Sousa, M. Á., Escobar-Alvarez, J. A., & Timón, R. (2019). Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports, 7(5), 115. https://doi.org/10.3390/sports7050115