Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Intervention
2.2. Blood Analysis
2.3. Net Endogenous Acid Production
- (1)
- Estimated NEAP1 (mEq∙day−1) = [0.91 × protein (g∙day−1)] − [0.57 × potassium (mEq∙day−1)] + 21
- (2)
- Estimated NEAP2 (mEq∙day−1) = [54.5 × protein (g∙day−1)/potassium (mEq∙day−1)] − 10.2
2.4. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Nutrient Changes over Intervention Period
3.3. Net Endogenous Acid Production (NEAP)
3.4. Blood Analysis
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saslow, L.R.; Daubenmier, J.J.; Moskowitz, J.T.; Kim, S.; Murphy, E.J.; Phinney, S.D.; Ploutz-Snyder, R.; Goldman, V.; Cox, R.M.; Mason, A.E.; et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes 2017, 7, 304. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Lowery, R.P.; Roberts, M.D.; Sharp, M.H.; Joy, J.M.; Shields, K.A.; Partl, J.; Volek, J.S.; D’Agostino, D. The effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training males. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- McSwiney, F.T.; Wardrop, B.; Hyde, P.N.; LaFountain, R.A.; Volek, J.S.; Doyle, L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 2018, 81, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.; Young, K.C.; Lowery, R.P.; Wilson, J.M.; et al. The three month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in crossfit trainees: A pilot study. Sports 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Phinney, S.; Bistrian, B.; Evans, W.; Gervino, E.; Blackburn, G.; Phinney, S. The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 1983, 32, 769–776. [Google Scholar] [CrossRef]
- Paoli, A.; Grimaldi, K.; D’Agostino, D.; Cenci, L.; Moro, T.; Bianco, A.; Palma, A. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J. Int. Soc. Sports Nutr. 2012, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Poprzecki, S.; Maszczyk, A.; Czuba, M.; Michalczyk, M.; Zydek, G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients 2014, 6, 2493–2508. [Google Scholar] [CrossRef] [PubMed]
- Woodyatt, R.T. Objects and method of diet adjustment in diabetes. Arch. Intern. Med. 1921, 28, 125–141. [Google Scholar] [CrossRef]
- Wilder, R. The effects of ketonemia on the course of epilepsy. Mayo. Clin. Bull. 1921, 2, 307–308. [Google Scholar]
- Stafstrom, C.E.; Rho, J.M. The ketogenic diet as a Treatment paradigm for diverse neurological disorders. Front. Pharmacol 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Damiani, E.; Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases. BioMed Res. Int. 2014, 2014, 474296. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, A.L.; Hallberg, S.J.; Creighton, B.C.; Volk, B.M.; Link, T.M.; Abner, M.K.; Glon, R.M.; McCarter, J.P.; Volek, J.S.; Phinney, S.D. A novel intervention including individualized nutritional recommendations reduces hemoglobin A1c level, medication use, and weight in type 2 diabetes. JMIR Diabetes 2017, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Churuangsuk, C.; Griffiths, D.; Lean, M.E.; Combet, E. Impacts of carbohydrate-restricted diets on micronutrient intakes and status: A systematic review. Obes. Rev. 2019, 20, 1132–1147. [Google Scholar] [CrossRef] [PubMed]
- Zinn, C.; Rush, A.; Johnson, R. Assessing the nutrient intake of a low-carbohydrate, high-fat (LCHF) diet: A hypothetical case study design. BMJ Open 2018, 8, e018846. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Phinney, S.D. The Art and Science of Low Carbohydrate Performance; Beyond Obesity LLC: Miami, FL, USA, 2012. [Google Scholar]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef]
- Taylor, M.K.; Swerdlow, R.H.; Burns, J.M.; Sullivan, D.K. An experimental ketogenic diet for alzheimer disease was nutritionally dense and rick in vegetables and avocado. Curr. Dev. Nutr. 2019, 3, n22003. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Guzel, O.; Arslan, N. Analysis of hematological parameters in patients treated with ketogenic diet due to drug-resistant epilepsy. Neurol. Sci. 2018, 39, 85–89. [Google Scholar] [CrossRef]
- McKay, A.K.; Peeling, P.; Pyne, D.B.; Welvaert, M.; Tee, N.; Leckey, J.J.; Sharma, A.P.; Ross, M.L.; Garvican-Lewis, L.A.; Van Swelm, R.P.; et al. Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. J. Sci. Med. Sport 2019, 22, 635–640. [Google Scholar] [CrossRef]
- Streez, K.L.; Wustefeld, T.; Klein, C.; Manns, M.P.; Trautwein, C. Mediators of inflammation and acute phase response in the liver. Cell. Mol. Biol. 2001, 47, 661–673. [Google Scholar]
- McKay, A.K.A.; Peeling, P.; Pyne, D.B.; Welvaert, M.; Tee, N.; Leckey, J.J.; Sharma, A.P.; Ross, M.L.R.; Garvican-Lezis, L.A.; Swinkels, D.W. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med. Sci. Sports Exerc. 2019, 51, 548–555. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in sports and exercise: Tracking health, performance, and recovery in athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M.; et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef] [PubMed]
- A Frassetto, L.; Todd, K.M.; Morris, R.C.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary Reference Values for Nutrients Summary Report. EFSA (European Food Safety Authority). Available online: https://www.efsa.europa.eu/en/supporting/pub/e15121 (accessed on 22 August 2019).
- Guideline: Sugars Intake for Adults and Children; World Health Organization (WHO): Geneva, Switzerland, 2015.
- Guideline: Sodium Intake for Adults and Children; World Health Organization (WHO): Geneva, Switzerland, 2012.
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the academy of nutrition and dietetics, dietitians of canada, and the american college of sports medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Maunder, E.; Kilding, A.E.; Plews, D.J. Substrate metabolism during ironman triathlon: Different horses on the same courses. Sports Med. 2018, 48, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Cox, G.R.; Culmmings, N.K.; Desbrow, B. Guidelines for daily carbohydrate intake: Do athletes achieve them. Sports Med. 2001, 31, 267–299. [Google Scholar] [CrossRef] [PubMed]
- Jager, R.; Kersick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International society of sports nutrition: Position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2018, 14, 20. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Krauss, R.M.; Taubes, G.; Willett, W. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ 2018, 361, k2139. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- Creighton, B.C.; Hyde, P.N.; Maresh, C.M.; Kraemer, W.J.; Phinney, S.D.; Volek, J.S. Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport Exerc. Med. 2018, 4, e000429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Boil. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.X. The Omega-6/Omega-3 fatty acid ratio in chronic diseases: Animal models and molecular aspects. World Rev. Nutr. Diet. 2011, 102, 22–29. [Google Scholar] [PubMed]
- Pendergast, D.R.; Leddy, J.J.; Venkatraman, J.T. A Perspective on Fat Intake in Athletes. J. Am. Coll. Nutr. 2000, 19, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S.; Zhang, J.; Van Der Spoel, D. Thiamin function, metabolism, uptake, and transport. Biochemistry 2014, 53, 821–835. [Google Scholar] [CrossRef]
- Larson-Meyer, E.D.; Kentz, S.W. Vitamin D and athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar] [CrossRef]
- Carmel, R. How I treat cobalamin (vitamin B12) deficiency. Blood 2008, 112, 2214–2221. [Google Scholar] [CrossRef] [Green Version]
- Crane, R. Intestinal absorption of sugars. Physiol. Rev. 1960, 40, 789–825. [Google Scholar] [CrossRef]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef]
- Chin, A. Copper deficiency anemia and neutropenia due to ketogenic diet. Pediatrics 2008, 141, e20173286. [Google Scholar] [CrossRef]
- Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity, Vitamin and Mineral Nutrition Information System; World Health Organization: Geneva, Switzerland, 2011.
- Sharpe, K.; Hopkins, W.; Emslie, K.R.; Howe, C.; Trout, G.J.; Kazlauskas, R.; Ashenden, M.J.; Gore, C.J.; Parisotto, R.; Hahn, A.G. Development of reference ranges in elite athletes for markers of altered erythropoiesis. Haematologica 2002, 87, 1248–1257. [Google Scholar] [PubMed]
- Lynch, S.R.; Cook, J.D. Interaction of vitamin C and iron. Annal. N. Y. Acad. Sci. 1980, 355, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Trinder, D. Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 103, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.; Farrag, K.; Stein, J. Limitations of serum ferritin in diagnosing iron deficiency in inflammatory conditions. Int. J. Chronic Dis. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Sharma, A.P.; Ross, M.L.; Welvaert, M.; Slater, G.J.; Burke, L.M. Chronic ketogenic low carbohydrate high fat diet has minimal effects on acid–base status in elite athletes. Nutrition 2018, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębski, Z.; Żychowska, M.; Konieczna, A.; Ratkowski, W.; Radzimiński, Ł. Changes in the acid-base balance and lactate concentration in the blood in amateur ultramarathon runners during a 100-km run. Boil. Sport 2015, 32, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrition 2017, 9, 1313. [Google Scholar] [CrossRef]
- E Jeukendrup, A. Carbohydrate intake during exercise and performance. Nutrition 2004, 20, 669–677. [Google Scholar] [CrossRef]
Group | Breakfast | Snack | Lunch | Dinner | Other |
---|---|---|---|---|---|
HC | 80 g granola, 135 mL semi-skimmed milk, 1 med apple, 1 med orange, 1 med banana, 6oz Americano, 30 mL semi-skimmed milk | 2 tbsp natural yoghurt, 20 g almond butter, 1 med banana | 2 cups raw baby spinach, ½ avg. avocado, 90 g chicken, 335 g sweet potato, 70 g cherry tomatoes, 35 g beetroot | 80 g white fish, 405 g new potatoes, 2 tsp low-fat butter, 85 g broccoli boiled in unsalted water, 90 g steamed baby carrots | 0–1 scoop whey protein (containing 20–25 g protein) and/or 0–4 energy gel(s) (containing 20–30 g of carbohydrate) |
LCKD | 4 avg eggs scrambled, with 1 tbsp full-fat butter, 1 tbsp full-fat cream, 2 cups of fried baby spinach, 1 cup of fried kale, 1 tsp chia seeds | 6 oz. Americano, 1 tbsp full-fat butter, 1 tbsp coconut oil | 100 g salmon, 1 avg avocado, 10 g blueberries, 40 g raspberries, 30 g mixed nuts, 1 tbsp coconut oil, 2 tbsp olive oil | 120 g sirloin steak, 1.5 cups steamed broccoli, 2 cups steamed cauliflower, 2 tbsp full-fat butter, 2 tbsp olive oil | 135 g Greek yoghurt, 1 tbsp cream, 2 avg squares 85–90% dark chocolate, 40 g raspberries and bouillon cubes or homemade broth |
Subject Characteristics | HC Diet (n = 11) | LCKD (n = 9) | t-Test | ||
---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | P Value | |
Age, years | 32.1 ± 6.4 | 20.0–38.0 | 33.8 ± 6.9 | 19.0–40.0 | 0.566 |
Height, cm | 181.2 ± 4.9 | 177.0–192.1 | 183.1 ± 5.5 | 175.5–191.6 | 0.408 |
BMI, kg/m2 | 23.9 ± 2.9 | 20.0–30.5 | 25.6 ± 3.0 | 22.2–31.3 | 0.090 |
Nutrient | HC Diet (n = 10) | LCKD (n = 9) | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ANCOVA | Recommended Intakes/DRV | |
Mean ± SD a | Mean ± SD | Mean ± SD a | Mean ± SD | P Value | ||
Energy, kcal | 2366 ± 774 | 2672 ± 363 | 2843 ± 558 | 3022 ± 911 | 0.66 | NA |
Carbohydrates, g·kg | 3.9 ± 1.3 | 5.3 ± 1.4 c | 5.2 ± 1.3 b | 0.5 ± 0.1 c | 0.000 * | 6–10 d |
Protein, g·kg | 1.5 ± 0.4 | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.6 ± 0.3 c | 0.031 * | 1.2–1.7 e |
Fat, %/kcal | 29.2 ± 13.4 | 18.6 ± 3.7 | 20.4 ± 12.3 | 77.2 ± 24.8 c | 0.000 * | 20–35% e |
Saturated Fat, % kcal | 12.4 ± 6.2 | 5.6 ± 2.2 c | 7.8 ± 1.5 | 29.5 ± 9.1 c | 0.000 * | ALAP f |
Omega 3:6 ratio | 1:5.1 | 1:6.0 | 1:10 | 1:2.7 c | 0.004 * | NA f |
Fibre, g | 42.8 ± 10.1 | 56.0 ± 19.8 | 48.3 ± 9.0 | 19.2 ± 4.9 c | 0.000 * | 25 f |
Free sugars, % kcal | 2.5 ± 3.8 | 2.2 ± 1.7 | 2.2 ± 2.9 | 0.7 ± 0.3 c | 0.021 * | <10 g |
Sodium, mg | 2802 ± 1344 | 3714 ± 1352 | 3403 ± 1051 | 1713 ± 1100 c | 0.006 * | <2000 h |
Potassium, mg | 4301 ± 1495 | 3650 ± 497 | 4674 ± 1373 | 4166 ± 729 | 0.49 | 3500 f |
Chloride, mg | 4697 ± 2519 | 7618 ± 3176 | 4983 ± 3047 b | 2181 ± 622 c | 0.001 * | NA |
Calcium, mg | 1223 ± 424 | 1030 ± 278 | 1154 ± 352 | 928 ± 240 | 0.71 | 950 f |
Phosphorus, mg | 2023 ± 565 | 2103 ± 460 | 2102 ± 422 | 1838 ± 379 | 0.26 | 550 f |
Magnesium, mg | 437 ± 121 | 513 ± 125 | 509 ± 124 | 380 ± 39 c | 0.017 * | 350 f |
Iron, mg | 18.8 ± 6.9 | 18.2 ± 5.4 | 18.7 ± 4.2 | 12.0 ± 2.0 c | 0.012 * | 11 f |
Zinc, mg | 18.2 ± 13.1 | 13.4 ± 2.2 | 14.3 ± 4.2 | 14.4 ± 3.7 | 0.81 | 16.3 f |
Copper, mg | 1.7 ± 0.7 | 1.9 ± 0.4 | 1.6 ± 0.3 | 1.3 ± 0.1 c | 0.011 * | 1.6 f |
Manganese, mg | 6.0 ± 2.2 | 10.1 ± 3.7 c | 8.0 ± 2.5 | 2.3 ± 0.4 c | 0.000 * | 3.0 f |
Selenium, µg | 63.9 ± 23.9 | 56.6 ± 15.0 | 39.3 ± 20.6 b | 136.3 ± 71.2 c | 0.017 * | 70 f |
Iodine, µg | 209 ± 151 | 87 ± 41 c | 185 ± 67 | 250 ± 108 | 0.000 * | 150 f |
Vitamin A, µg | 1565 ± 1335 | 581 ± 450 c | 714 ± 637 b | 1849 ± 558 c | 0.014 * | 750 f |
Vitamin D, µg | 5.4 ± 5.2 | 3.5 ± 5.2 c | 2.7 ± 2.4 | 17.6 ± 4.5 c | 0.000 * | 15 f |
Vitamin E, mg | 13.9 ± 10.3 | 8.6 ± 8.6 | 8.7 ± 7.7 | 23.7 ± 4.7 c | 0.000 * | 13 f |
Vitamin K1, µg | 103.3 ± 100 | 101.4 ± 115 | 34.1 ± 62 b | 301.3 ± 174 c | 0.017 * | 70 f |
Thiamine, mg/MJ | 0.21 ± 0.06 | 0.22 ± 0.04 | 0.23 ± 0.05 | 0.11 ± 0.04 c | 0.000 * | 0.1 f |
Riboflavin, mg | 2.0 ± 0.9 | 1.2 ± 0.4 c | 2.3 ± 0.6 | 2.8 ± 0.7 c | 0.000 * | 1.6 f |
Niacin, mg NE/MJ | 5.7 ± 2.0 | 4.6 ± 1.4 | 4.9 ± 1.9 | 4.5 ± 0.7 | 0.52 | 1.6 f |
Pantothenic Acid, mg | 8.0 ± 3.6 | 6.1 ± 1.2 | 8.9 ± 3.2 | 10.2 ± 1.7 | 0.000 * | 5.0 f |
Vitamin B6, mg | 2.7 ± 0.8 | 3.2 ± 0.3 | 3.2 ± 0.9 | 3.6 ± 0.8 | 0.001 * | 1.7 f |
Folic Acid, µg DFE | 379 ± 145 | 311 ± 75 | 318 ± 164 | 309 ± 68 | 0.34 | 330 f |
Vitamin B12, µg | 5.4 ± 2.5 | 2.9 ± 2.3 c | 4.9 ± 2.3 | 13.5 ± 4.5 c | 0.000 * | 4.0 f |
Biotin, µg | 45.0 ± 16.1 | 46.5 ± 14.6 | 50.3 ± 24.1 | 70.4 ± 14.6 c | 0.001 * | 40 f |
Vitamin C, mg | 143 ± 85 | 123 ± 71 | 134 ± 84 | 86 ± 68 | 0.21 | 110 f |
GL | 146 ± 50 | 200 ± 86 | 216 ± 62 b | 6 ± 3 c | 0.000 * | NA f |
PRAL | 25.4 ± 34.9 | 37.1 ± 17.1 | 10.0 ± 18.0 | 22.9 ± 27.2 | 0.161 | NA |
Caffeine, mg | 111.6 ± 66.9 | 149.6 ± 65.8 | 113.3 ± 104.8 | 162.6 ± 113.0 | 0.68 | NA |
Measure | HC Group (n = 10) | LCKD Group (n = 9) | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
NEAP1, mEq∙day−1 | 64.9 ± 27.3 | 52.8 ± 20.9 | 53.0 ± 16.7 | 79.0 ± 30.1 *,† |
NEAP2, mEq∙day−1 | 52.7 ± 19.2 | 44.8 ± 14.8 | 42.3 ± 13.1 | 57.4 ± 16.9 |
Blood Measures | HC Group (n = 10) a | LCKD Group (n = 9) a | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | Change | Pre | Post | Change | ANCOVA | |||
Mean ± SD | Mean ± SD | Mean | Mean ± SD | Mean ± SD | Mean | F-value | P value | ES b: Np2 | |
RBC, 10−6 µL | 4.59 ± 0.33 | 4.30 ± 0.63 | −0.29 | 4.67 ± 0.42 | 4.44 ± 0.61 | −0.23 | (1,17) = 0.074 | 0.79 | 0.00 |
WBC, 10−3 µL | 5.7 ± 1.0 | 5.5 ± 1.0 | −0.2 | 6.0 ± 1.9 | 6.5 ± 2.8 | +0.5 | (1,17) = 0.875 | 0.36 | 0.049 |
Haemoglobin, g/dL | 14.15 ± 1.25 | 13.36 ± 1.87 | −0.79 | 14.29 ± 0.99 | 12.95 ± 1.62 | −1.34 | (1,17) = 0.414 | 0.53 | 0.025 |
Haematocrit, % | 0.41 ± 0.03 | 0.38 ± 0.05 | +0.03 | 0.41 ± 0.03 | 0.39 ± 0.05 | −0.02 | (1,17) = 0.140 | 0.75 | 0.006 |
MCV, fL | 90.47 ± 4.52 | 89.35 ± 4.78 | −1.12 | 89.19 ± 3.14 | 88.31 ± 2.40 | −0.88 | (1,17) = 0.226 | 0.64 | 0.014 |
MCH, pg | 30.81 ± 1.78 | 31.14 ± 2.00 | +0.33 | 30.88 ± 1.75 | 29.27 ± 1.63 c | −1.61 | (1,17) = 7.190 | 0.016 * | 0.310 |
MCHC, g/dL | 33.66 ± 1.95 | 34.85 ± 1.52 | +1.19 | 34.59 ± 0.87 | 33.14 ± 1.33 c | −1.45 | (1,17) = 5.426 | 0.033 * | 0.250 |
RDW, μm | 12.65 ± 0.70 | 12.52 ± 0.69 | −0.13 | 12.89 ± 0.44 | 13.83 ± 2.34 | +0.94 | (1,17) = 1.897 | 0.19 | 0.106 |
Platelets, 10−6 µL | 204.6 ± 36.2 | 202.9 ± 40.4 | −1.7 | 194.5 ± 49.1 | 208.5 ± 56.6 | +14.0 | (1,17) = 0.957 | 0.34 | 0.053 |
Lymphocytes, % WBC | 36.3 ± 7.2 | 34.5 ± 6.5 | +2.2 | 34.8 ± 7.1 | 36.2 ± 8.1 | +1.4 | (1,17) = 1.023 | 0.33 | 0.057 |
Monocytes, % WBC | 5.7 ± 1.4 | 7.0 ± 2.5 | +1.3 | 5.7 ± 1.5 | 6.0 ± 1.2 | +0.3 | (1,17) = 1.344 | 0.26 | 0.073 |
Granulocytes, % WBC | 57.9 ± 7.2 | 58.1 ± 6.1 | +0.2 | 59.4 ± 7.5 | 57.7 ± 8.4 | −1.7 | (1,17) = 0.204 | 0.66 | 0.012 |
MPV, fL | 8.1 ± 0.6 | 7.9 ± 0.8 | −0.2 | 8.4 ± 1.2 | 7.9 ± 0.9 | −0.5 | (1,17) = 0.254 | 0.62 | 0.015 |
Serum Ferritin, ng/mL | 117.6 ± 107.0 | 149.2 ± 103.6 | +31.6 | 235.7 ± 90.3 | 249.9 ± 113.6 | +14.2 | (1,11) = 0.004 | 0.95 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McSwiney, F.T.; Doyle, L. Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks. Sports 2019, 7, 201. https://doi.org/10.3390/sports7090201
McSwiney FT, Doyle L. Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks. Sports. 2019; 7(9):201. https://doi.org/10.3390/sports7090201
Chicago/Turabian StyleMcSwiney, Fionn T., and Lorna Doyle. 2019. "Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks" Sports 7, no. 9: 201. https://doi.org/10.3390/sports7090201
APA StyleMcSwiney, F. T., & Doyle, L. (2019). Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks. Sports, 7(9), 201. https://doi.org/10.3390/sports7090201