The Effects of the Barbell Hip Thrust on Post-Activation Performance Enhancement of Change of Direction Speed in College-Aged Men and Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Barbell Hip Thrust (BHT)
2.4. 505 Change-of-Direction Speed Test
2.5. Post-Activation Performance Enhancement Interventions
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COD | change-of-direction |
PAPE | post-activation performance enhancement |
CA | conditioning activity |
RM | repetition maximum |
m | meter |
min | minute |
h | hour |
BHT | barbell hip thrust |
CC | control condition |
kg | kilograms |
ANOVA | analysis of variance |
kg·BM−1 | kilogram per kilogram body mass |
s | second |
SD | standard deviation |
r | correlation coefficient |
p | significance |
References
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, J.; Polman, R.; O’Donoghue, P.; McNaughton, L. Effective speed and agility conditioning methodology for random intermittent dynamic type sports. J. Strength Cond. Res. 2007, 21, 1093–1100. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D. The effects of traditional and enforced stopping speed and agility training on multidirectional speed and athletic performance. J. Strength Cond. Res. 2014, 28, 1538–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.; Cronin, J.B. Effects of a six-week hip thrust vs. front squat resistance training program on performance in adolescent males: A randomized controlled trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; Beato, M. The flywheel paradigm in team sports: A soccer approach. Strength Cond. J. 2020, in press. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebben, W.P. Complex training: A brief review. J. Sports Sci. Med. 2002, 1, 42–46. [Google Scholar]
- Okuno, N.M.; Tricoli, V.; Silva, S.B.; Bertuzzi, R.; Moreira, A.; Kiss, M.A. Postactivation potentiation on repeated-sprint ability in elite handball players. J. Strength Cond. Res. 2013, 27, 662–668. [Google Scholar] [CrossRef]
- Sole, C.J.; Moir, G.L.; Davis, S.E.; Witmer, C.A. Mechanical analysis of the acute effects of a heavy resistance exercise warm-up on agility performance in court-sport athletes. J. Hum. Kinet. 2013, 39, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Orjalo, A.J.; Lockie, R.G.; Balfany, K.; Callaghan, S.J. The effects of lateral bounds on post-activation potentiation of change-of-direction speed measured by the 505 test in college-aged men and women. Sports 2020, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Zink, A.J.; Perry, A.C.; Robertson, B.L.; Roach, K.E.; Signorile, J.F. Peak power, ground reaction forces, and velocity during the squat exercise performed at different loads. J. Strength Cond. Res. 2006, 20, 658–664. [Google Scholar] [PubMed]
- Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, E.B.; Thomsen, L.; Klausen, K. Activity of mono- and biarticular leg muscles during sprint running. Eur. J. Appl. Physiol. Occup. Phys. 1985, 54, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; Cronin, J. A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyographic activity in the back squat and barbell hip thrust exercises. J. Appl. Biomech. 2015, 31, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Padulo, J.; Seitz, L.D. Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. J. Sports Sci. 2018, 36, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Seitz, L.B. Hip thrust-based PAP effects on sprint performance of soccer players: Heavy-loaded versus optimum-power development protocols. J. Sports Sci. 2018, 36, 2375–2382. [Google Scholar] [CrossRef]
- Chiu, L.Z.; Fry, A.C.; Weiss, L.W.; Schilling, B.K.; Brown, L.E.; Smith, S.L. Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 2003, 17, 671–677. [Google Scholar]
- Seitz, L.B.; de Villarreal, E.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation following ballistic and non-ballistic complexes: The effect of strength level. J. Strength Cond. Res. 2016, 30, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Orjalo, A.J.; Moreno, M.R. A pilot analysis: Can the Bulgarian split-squat potentiate sprint acceleration in strength-trained men? FU Phys. Ed. Sport 2018, 15, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Davis, D.; Giuliano, L.; Risso, D.V.; Orjalo, F.G.; Moreno, A.J.; Lazar, A. A preliminary case analysis of the post-activation potentiation effects of plyometrics on sprint performance in women. Sport Sci. Rev. 2016, 25, 300–319. [Google Scholar] [CrossRef]
- Lockie, R.; Lazar, G.; Risso, A.; Giuliano, D.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.; Davis, D.L.; Moreno, M.R.; et al. Limited post-activation potentiation effects provided by the walking lunge on sprint acceleration: A preliminary analysis. TOSSJ 2017, 10, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Barber, O.R.; Thomas, C.; Jones, P.A.; McMahon, J.J.; Comfort, P. Reliability of the 505 change-of-direction test in netball players. Int. J. Sports Physiol. Perform. 2016, 11, 377–380. [Google Scholar] [CrossRef]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.Z. The acute potentiating effects of back squats on athlete performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef]
- Turner, A.P.; Bellhouse, S.; Kilduff, L.P.; Russell, M. Postactivation potentiation of sprint acceleration performance using plyometric exercise. J. Strength Cond. Res. 2015, 29, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Whelan, N.; O’Regan, C.; Harrison, A.J. Resisted sprints do not acutely enhance sprinting performance. J. Strength Cond. Res. 2014, 28, 1858–1866. [Google Scholar] [CrossRef]
- Contreras, B.; Cronin, J.; Schoenfeld, B. Barbell hip thrust. Strength Cond. J. 2011, 33, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Moreno, M.R.; Lazar, A.; Risso, F.G.; Tomita, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Torne, I.A.; Stokes, J.J.; Giuliano, D.V.; et al. The 1-repetition maximum mechanics of a high-handle hexagonal bar deadlift compared to a conventional deadlift as measured by a linear position transducer. J. Strength Cond. Res. 2018, 32, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Moreno, M.R.; Orjalo, A.J.; Lazar, A.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.J.; Giuliano, D.V.; Risso, F.G.; et al. The relationships between height, arm length, and leg length on the mechanics of the conventional and high-handle hexagonal bar deadlift. J. Strength Cond. Res. 2018, 32, 3011–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaney, J.A.; Scott, T.J.; Ballard, D.A.; Duthie, G.M.; Hickmans, J.A.; Lockie, R.G.; Dascombe, B.J. Contributing factors to change-of-direction ability in professional rugby league players. J. Strength Cond. Res. 2015, 29, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Jeffriess, M.D. Analysis of specific speed testing for cricketers. J. Strength Cond. Res. 2013, 27, 2981–2988. [Google Scholar] [CrossRef]
- Lockie, R.G.; Jalilvand, F.; Orjalo, A.J.; Giuliano, D.V.; Moreno, M.R.; Wright, G.A. A methodological report: Adapting the 505 change-of-direction speed test specific to American football. J. Strength Cond. Res. 2017, 31, 539–547. [Google Scholar] [CrossRef]
- Lockie, R.G.; Post, B.K.; Dawes, J.J. Physical qualities pertaining to shorter and longer change-of-direction speed test performance in men and women. Sports 2019, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Post, B.K.; Dawes, J.J.; Lockie, R.G. Relationships between tests of strength, power, and speed and the 75-yard pursuit run. J. Strength Cond. Res. 2019, in press. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Jones, M.T. Relationships between linear speed and lower-body power with change-of-direction speed in National Collegiate Athletic Association Divisions I and II women soccer athletes. Sports 2018, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Moreno, M.R.; Orjalo, A.J.; Stage, A.A.; Liu, T.M.; Birmingham-Babauta, S.A.; Hurley, J.M.; Torne, I.A.; Beiley, M.D.; Risso, F.G.; et al. Repeated-sprint ability in Division I collegiate male soccer players: Positional differences and relationships with performance tests. J. Strength Cond. Res. 2019, 33, 1362–1370. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Orjalo, A.J.; Moreno, M.R. Loading range for the development of peak power in the close-grip bench press versus the traditional bench press. Sports 2018, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Jeffriess, M.D.; Schultz, A.B.; McGann, T.S.; Callaghan, S.J.; Lockie, R.G. Effects of preventative ankle taping on planned change-of-direction and reactive agility performance and ankle muscle activity in basketballers. J. Sports Sci. Med. 2015, 14, 864–876. [Google Scholar] [PubMed]
- Callaghan, S.J.; Lockie, R.G.; Andrews, W.A.; Chipchase, R.F.; Nimphius, S. The relationship between inertial measurement unit-derived ‘force signatures’ and ground reaction forces during cricket pace bowling. Sport Biomech. 2020, 19, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standing, R.J.; Maulder, P.S. The biomechanics of standing start and initial acceleration: Reliability of the key determining kinematics. J. Sports Sci. Med. 2017, 16, 154–162. [Google Scholar]
- Comyns, T.M.; Harrison, A.J.; Hennessy, L.K.; Jensen, R.L. The optimal complex training rest interval for athletes from anaerobic sports. J. Strength Cond. Res. 2006, 20, 471–476. [Google Scholar]
- Bevan, H.R.; Cunningham, D.J.; Tooley, E.P.; Owen, N.J.; Cook, C.J.; Kilduff, L.P. Influence of postactivation potentiation on sprinting performance in professional rugby players. J. Strength Cond. Res. 2010, 24, 701–705. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Orr, R.M.; Stierli, M.; Dulla, J.M.; Orjalo, A.J. An analysis of the effects of sex and age on upper- and lower-body power for law enforcement agency recruits prior to academy training. J. Strength Cond. Res. 2018, 32, 1968–1974. [Google Scholar] [CrossRef] [Green Version]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Dillman, C.F.R.; Stevens, E.M. Sex in the media, sex on the mind: Linking television use, sexual permissiveness, and sexual concept accessibility in memory. Sex Cult. 2018, 22, 22–38. [Google Scholar] [CrossRef]
- Lockie, R.G.; Balfany, K.; Denamur, J.K.; Moreno, M.R. A preliminary analysis of relationships between a 1RM hexagonal bar load and peak power with the tactical task of a body drag. J. Hum. Kinet. 2019, 68, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical fitness characteristics that relate to Work Sample Test Battery performance in law enforcement recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockie, R.G.; Ruvalcaba, T.R.; Stierli, M.; Dulla, J.M.; Dawes, J.J.; Orr, R.M. Waist circumference and waist-to-hip ratio in law enforcement agency recruits: Relationship to performance in physical fitness tests. J. Strength Cond. Res. 2020, 34, 1666–1675. [Google Scholar] [CrossRef] [Green Version]
- Mackey, S.; Chaarani, B.; Kan, K.J.; Spechler, P.A.; Orr, C.; Banaschewski, T.; Barker, G.; Bokde, A.L.W.; Bromberg, U.; Buchel, C.; et al. Brain regions related to impulsivity mediate the effects of early adversity on antisocial behavior. Biol. Psychiatry 2017, 82, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewton, M.; Ashwin, C.; Brosnan, M. Syllogistic reasoning reveals reduced bias in people with higher autistic-like traits from the general population. Autism 2019, 23, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2002. Available online: www.sportsci.org/resource/stats/index.html (accessed on 11 November 2019).
- Beedie, C.J.; Foad, A.J. The placebo effect in sports performance: A brief review. Sports Med. 2009, 39, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Birminagham-Babauta, S.A.; Stokes, J.J.; Liu, T.M.; Risso, F.G.; Lazar, A.; Giuliano, D.V.; Orjalo, A.J.; Moreno, M.R.; Stage, A.A.; et al. An analysis of collegiate club-sport female lacrosse players: Sport-specific field test performance and the influence of stick carry on speed. Int. J. Exerc. Sci. 2018, 11, 269–280. [Google Scholar]
- Jarvis, P.; Cassone, N.; Turner, A.; Chavda, S.; Edwards, M.; Bishop, C. Heavy barbell hip thrusts do not effect sprint performance: An 8-week randomized controlled study. J. Strength Cond. Res. 2019, 33, S78–S84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweifel, M.; Vigotsky, A.; Contreras, B.; Njororai, S.W. Effects of 6-week squat, deadlift, or hip thrust training program on speed, power, agility, and strength in experienced lifters: A pilot study. J. Trainol. 2017, 6, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Neptune, R.R.; Wright, I.C.; van den Bogert, A.J. Muscle coordination and function during cutting movements. Med. Sci. Sports Exerc. 1999, 31, 294–302. [Google Scholar] [CrossRef]
- Lockie, R.G. Testing, assessment, and monitoring of agility and quickness. Hum. Kinet. 2019, 2, 77–98. [Google Scholar]
Data Collection Time Points | BHT (s) | CC (s) |
---|---|---|
Baseline | 2.82 ± 0.27 | 2.84 ± 0.28 |
4 min | 2.76 ± 0.25 | 2.82 ± 0.26 |
8 min | 2.77 ± 0.26 | 2.81 ± 0.27 |
12 min | 2.77 ± 0.26 | 2.80 ± 0.28 |
16 min | 2.74 ± 0.25 | 2.79 ± 0.30 |
Best | 2.70 ± 0.25 | 2.74 ± 0.27 |
Data Collection Time Points | BHT | CC |
---|---|---|
4 min | 97.18 ± 4.04 | 99.47 ± 3.17 |
8 min | 98.26 ± 3.02 | 99.30 ± 3.62 |
12 min | 98.21 ± 3.48 | 98.76 ± 3.95 |
16 min | 97.22 ± 3.46 | 98.27 ± 4.54 |
Best | 95.97 ± 3.19 | 96.72 ± 3.82 |
Condition | Absolute Strength | Relative Strength | ||
---|---|---|---|---|
r | p | r | p | |
BHT | ||||
4 min | 0.151 | 0.357 | 0.115 | 0.484 |
8 min | 0.064 | 0.698 | 0.105 | 0.523 |
12 min | 0.186 | 0.256 | 0.112 | 0.496 |
16 min | −0.027 | 0.872 | 0.009 | 0.956 |
Best | 0.080 | 0.630 | 0.060 | 0.718 |
CC | ||||
4 min | 0.009 | 0.955 | 0.001 | 0.996 |
8 min | 0.209 | 0.202 | 0.208 | 0.203 |
12 min | 0.006 | 0.969 | −0.011 | 0.945 |
16 min | 0.020 | 0.906 | 0.044 | 0.790 |
Best | 0.020 | 0.906 | 0.002 | 0.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orjalo, A.J.; Callaghan, S.J.; Lockie, R.G. The Effects of the Barbell Hip Thrust on Post-Activation Performance Enhancement of Change of Direction Speed in College-Aged Men and Women. Sports 2020, 8, 151. https://doi.org/10.3390/sports8120151
Orjalo AJ, Callaghan SJ, Lockie RG. The Effects of the Barbell Hip Thrust on Post-Activation Performance Enhancement of Change of Direction Speed in College-Aged Men and Women. Sports. 2020; 8(12):151. https://doi.org/10.3390/sports8120151
Chicago/Turabian StyleOrjalo, Ashley J., Samuel J. Callaghan, and Robert G. Lockie. 2020. "The Effects of the Barbell Hip Thrust on Post-Activation Performance Enhancement of Change of Direction Speed in College-Aged Men and Women" Sports 8, no. 12: 151. https://doi.org/10.3390/sports8120151
APA StyleOrjalo, A. J., Callaghan, S. J., & Lockie, R. G. (2020). The Effects of the Barbell Hip Thrust on Post-Activation Performance Enhancement of Change of Direction Speed in College-Aged Men and Women. Sports, 8(12), 151. https://doi.org/10.3390/sports8120151