Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Body Composition and Anthropometrics
2.4. Graded Exercise Test
2.5. 3 Minute All-Out Test
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Summary
4.2. Using the 3MT to Predict VO2max and its Applications
4.3. Practical Applications for Exercise Prescription
4.4. High-Intensity Functional Training
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded exercise testing protocols for the determination of VO2max: Historical perspectives, progress, and future considerations. J. Sports Med. 2016, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, C.; Blissmer, B.; Deschenes, M.; Franklin, B.; Lamonte, M.; Lee, I.; Nieman, D.; Swain, D. ACSM Position Stand. Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, M.; Wilson, J.; Watt, D.; Grant, S. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J. Sports Sci. 1999, 17, 845–852. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.E.; Howley, E.T.; Bassett, D.R., Jr.; Thompson, D.L.; Fitzhugh, E.C. Test of the classic model for predicting endurance running performance. Med. Sci. Sports Exerc. 2010, 42, 991–997. [Google Scholar] [CrossRef]
- Costill, D.; Thomason, H.; Roberts, E. Fractional utilization of the aerobic capacity during distance running. Med. Sci. Sports 1973, 5, 248–252. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Lourenço, T.F.; da Silva, F.O.; Tessutti, L.S.; da Silva, C.E.; Abad, C.C. Prediction of 3000-m Running Performance Using Classic Physiological Respiratory Responses. Int. J. Kinesiol. Sports Sci. 2018, 6, 18–24. [Google Scholar] [CrossRef]
- Bragada, J.A.; Santos, P.J.; Maia, J.A.; Colaço, P.J.; Lopes, V.P.; Barbosa, T.M. Longitudinal Study in 3000 m Male Runners: Relationship between Performance and Selected Physiological Parameters. J. Sports Sci. Med. 2010, 9, 439–444. [Google Scholar]
- Carlsson, M.; Carlsson, T.; Hammarström, D.; Malm, C.; Tonkonogi, M. Time trials predict the competitive performance capacity of junior cross-country skiers. Int. J. Sports Physiol. Perform. 2014, 9, 12–18. [Google Scholar] [CrossRef]
- Black, M.I.; Durant, J.; Jones, A.M.; Vanhatalo, A. Critical power derived from a 3-minute all-out test predicts 16.1-km road time-trial performance. Eur. J. Sport Sci. 2014, 14, 217–223. [Google Scholar] [CrossRef]
- Billat, L.V. Use of blood lactate measurements for prediction of exercise performance and for control of training. Sports Med. 1996, 22, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; Bentley, D.J.; Luttikholt, H.; McNaughton, L.R.; Millet, G.P. Challenging a dogma of exercise physiology. Sports Med. 2008, 38, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.; McNaughton, L.; Carroll, S. Time at VO2max during Intermittent Treadmill Running: Test Protocol Dependent or Methodological Artefact? Int. J. Sports Med. 2007, 28, 934–939. [Google Scholar] [CrossRef]
- Kang, J.; Chaloupka, E.C.; Mastrangelo, M.A.; Biren, G.B.; Robertson, R.J. Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur. J. Appl. Physiol. 2001, 84, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.; Hesselink, M. Overtraining—What do lactate curves tell us? Brit. J. Sports Med. 1994, 28, 239–240. [Google Scholar] [CrossRef] [Green Version]
- Snyder, A.; Jeukendrup, A.; Hesselink, M.; Kuipers, H.; Foster, C. A physiological/psychological indicator of over-reaching during intensive training. Int. J. Sports Med. 1993, 14, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.; Carey, M.; Zhao, S.; Febbraio, M. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J. Appl. Physiol. 1999, 86, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Burnley, M.; Black, M.I.; Poole, D.C.; Vanhatalo, A. The maximal metabolic steady state: Redefining the ‘gold standard’. Physiol. Rep. 2019, 7, e14098. [Google Scholar] [CrossRef] [Green Version]
- Mattioni Maturana, F.; Keir, D.A.; McLay, K.M.; Murias, J.M. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl. Physiol. Nutr. Metab. 2016, 41, 1197–1203. [Google Scholar] [CrossRef]
- Feasel, C.D.; Sandroff, B.M.; Motl, R.W. Cardiopulmonary Exercise Testing Using the Modified Balke Protocol in Fully Ambulatory People With Multiple Sclerosis. Cardiopulm Phys. Ther. J. 2020. [Google Scholar] [CrossRef]
- Björkman, F.; Ekblom-Bak, E.; Ekblom, Ö.; Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 2016, 116, 1627–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirhan, B.; Cengiz, A.; Turkmen, M.; TEKBAŞ, B.; Cebi, M. Evaluating maximum oxygenuptake of male soccer players with bruce protocol. Sci. Move Health 2014, 14, 223–229. [Google Scholar]
- Penry, J.T.; Wilcox, A.R.; Yun, J. Validity and reliability analysis of Cooper’s 12-min run and the multistage shuttle run in healthy adults. J. Strength Cond. Res. 2011, 25, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Llodio, I.; Gorostiaga, E.; Garcia-Tabar, I.; Granados, C.; Sánchez-Medina, L. Estimation of the maximal lactate steady state in endurance runners. Int. J. Sports Med. 2016, 37, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carminatti, L.J.; Batista, B.N.; da Silva, J.F.; Tramontin, A.F.; Costa, V.P.; de Lucas, R.D.; Borszcz, F.K. Predicting Maximal Lactate Steady State from Carminatti’s Shuttle Run Test in Soccer Players. Int. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Sartor, F.; Vernillo, G.; De Morree, H.M.; Bonomi, A.G.; La Torre, A.; Kubis, H.-P.; Veicsteinas, A. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Med. 2013, 43, 865–873. [Google Scholar] [CrossRef]
- Freeberg, K.A.; Baughman, B.R.; Vickey, T.; Sullivan, J.A.; Sawyer, B.J. Assessing the ability of the Fitbit Charge 2 to accurately predict VO2max. MHealth 2019, 5. [Google Scholar] [CrossRef]
- Buttar, K.K. A review: Maximal oxygen uptake (VO2max) and its estimation methods. IJPESH 2019, 6, 24–32. [Google Scholar]
- Nabi, T.; Rafiq, N.; Qayoom, O. Assessment of cardiovascular fitness [VO2max] among medical students by Queens College step test. Int. J. Biomed. Adv. Res. 2015, 6, 418–421. [Google Scholar]
- Pettitt, R.W.; Jamnick, N.; Clark, I.E. 3-min all-out exercise test for running. Int. J. Sports Med. 2012, 33, 426–431. [Google Scholar] [CrossRef]
- Burnley, M.; Doust, J.H.; Vanhatalo, A. A 3-minute all-out test to determine peak oxygen uptake and the maximal steady state. Med. Sci. Sports Exerc. 2006, 38, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.G.; Jones, A.M. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur. J. Appl. Physiol. 2001, 85, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Doust, J.; Burnley, M. Determination of critical power using a 3-min all-out cycling test. Med. Sci. Sports Exerc. 2007, 39, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.L.; Fukuda, D.H.; Smith, A.E.; Cramer, J.T.; Stout, J.R. Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers. J. Strength Cond. Res. 2012, 26, 733–738. [Google Scholar] [CrossRef]
- Santos, T.M.; Rodrigues, A.I.; Greco, C.C.; Marques, A.L.; Terra, B.S.; Oliveira, B.R.R. Estimated VO2max and its corresponding velocity predict performance of amateur runners. Braz. J. Kinanthropom Hum. Perform. 2012, 14, 192–201. [Google Scholar]
- Cheng, C.-F.; Yang, Y.-S.; Lin, H.-M.; Lee, C.-L.; Wang, C.-Y. Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur. J. Appl. Physiol. 2012, 112, 1251–1260. [Google Scholar] [CrossRef]
- Kramer, M.; Du Randt, R.; Watson, M.; Pettitt, R.W. Oxygen uptake kinetics and speed-time correlates of modified 3-min all-out shuttle running in soccer players. PLoS ONE 2018, 13, e0201389. [Google Scholar] [CrossRef] [Green Version]
- Moritani, T.; Nagata, A.; Devries, H.A.; Muro, M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 1981, 24, 339–350. [Google Scholar] [CrossRef]
- Kranenburg, K.J.; Smith, D.J. Comparison of critical speed determined from track running and treadmill tests in elite runners. Med. Sci. Sports Exerc. 1996, 28, 614–618. [Google Scholar]
- Nimmerichter, A.; Novak, N.; Triska, C.; Prinz, B.; Breese, B.C. Validity of treadmill-derived critical speed on predicting 5000-m track-running performance. J. Strength Cond. Res. 2017, 31, 706–714. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological Performance Measures as Indicators of CrossFit® Performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative values for self-reported benchmark workout scores in crossfit® practitioners. Sports Med. Open 2018, 4, 39. [Google Scholar] [CrossRef]
- Dicks, N.D.; Jamnick, N.A.; Murray, S.R.; Pettitt, R.W. Load determination for the 3-min all-out exercise test for cycle ergometry. Int. J. Sports Physiol. Perform. 2016, 11, 197–203. [Google Scholar] [CrossRef]
- Kramer, M.; Watson, M.; Du Randt, R.; Pettitt, R.W. Critical speed as a measure of aerobic fitness for male rugby union players. Int. J. Sports Physiol. Perform. 2019, 14, 518–524. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Zimmerman, S.L.; Miller, W.C.; Hildebrandt, L.; Hammer, R.L.; Fernhall, B. Evaluation of the BOD POD for estimating percentage body fat in a heterogeneous group of adult humans. Eur. J. Appl. Physiol. 2001, 85, 326–332. [Google Scholar] [CrossRef]
- Mathew, J.; Groth, B.; Horswill, C. Assessment of Reliability and Validity of Bod Pod in Body Composition Analysis. J. Kinesiol. Nutr. Stud. Res. 2015, 3. [Google Scholar]
- Macfarlane, D.; Wu, H. Inter-unit variability in two ParvoMedics TrueOne 2400 automated metabolic gas analysis systems. Eur. J. Appl. Physiol. 2013, 113, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, R.W.; Clark, I.E.; Ebner, S.M.; Sedgeman, D.T.; Murray, S.R. Gas exchange threshold and VO2max testing for athletes: An update. J. Strength Cond. Res. 2013, 27, 549–555. [Google Scholar] [CrossRef]
- Schaun, G.Z. The Maximal Oxygen Uptake Verification Phase: A Light at the End of the Tunnel? Sports Med. Open 2017, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Midgley, A.W.; McNaughton, L.R.; Carroll, S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Appl. Physiol. Nutr. Metab. 2006, 31, 541–548. [Google Scholar] [CrossRef]
- Midgley, A.W.; Carroll, S.; Marchant, D.; McNaughton, L.R.; Siegler, J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Appl. Physiol. Nutr. Metab. 2009, 34, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkeberg, J.; Dalleck, L.; Kamphoff, C.; Pettitt, R. Validity of 3 protocols for verifying VO2max. Int. J. Sports Med. 2011, 32, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, H.; Verstappen, F.; Keizer, H.; Geurten, P.; Van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Robergs, R.A. Simplified method and program for incremental exercise protocol development. J. Exerc. Physiol. Online 2007, 10, 1–23. [Google Scholar]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Weatherwax, R.; Richardson, T.; Beltz, N.; Nolan, P.; Dalleck, L. Verification testing to confirm VO2max in altitude-residing, endurance-trained runners. Int. J. Sports Med. 2016, 37, 525–530. [Google Scholar] [CrossRef]
- Joyner, M.J. Physiological limits to endurance exercise performance: Influence of sex. J. Physiol. 2017, 595, 2949–2954. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar, R.A.; Salvador, A.F.; Penteado, R.; Faraco, H.C.; Pettitt, R.W.; Caputo, F. Reliability and validity of the 3-min all-out running test. Rev. Bras. De Ciências Do Esporte 2018, 40, 288–294. [Google Scholar] [CrossRef]
- Piatrikova, E.; Sousa, A.C.; Gonzalez, J.T.; Williams, S. Validity and reliability of the 3-minute all-out test in national and International competitive swimmers. Int. J. Sports Physiol. Perform. 2018, 13, 1190–1198. [Google Scholar] [CrossRef]
- Clark, I.E.; Gartner, H.E.; Williams, J.L.; Pettitt, R.W. Validity of the 3-min all-out exercise test on the CompuTrainer. J. Strength Cond. Res. 2016, 30, 825–829. [Google Scholar] [CrossRef]
- Hill, D.W.; Smith, J.C. A comparison of methods of estimating anaerobic work capacity. Ergonomics 1993, 36, 1495–1500. [Google Scholar] [CrossRef]
- Miura, A.; Endo, M.; Sato, H.; Sato, H.; Barstow, T.J.; Fukuba, Y. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. Eur. J. Appl. Physiol. 2002, 87, 238–244. [Google Scholar] [CrossRef]
- Nebelsick-Gullett, L.J.; Housh, T.J.; Johnson, G.O.; Bauge, S.M. A comparison between methods of measuring anaerobic work capacity. Ergonomics 1988, 31, 1413–1419. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.; Millet, G.; Pactat, F.; Ahmaidi, S. Predicting intermittent running performance: Critical velocity versus endurance index. Int. J. Sports Med. 2008, 29, 307–315. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Papoti, M.; Gobatto, C.A. Anaerobic capacity may not be determined by critical power model in elite table tennis players. J. Sports Sci. Med. 2008, 7, 54. [Google Scholar]
- Bergstrom, H.C.; Housh, T.J.; Zuniga, J.M.; Traylor, D.A.; Lewis Jr, R.W.; Camic, C.L.; Schmidt, R.J.; Johnson, G.O. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J. Strength Cond. Res. 2014, 28, 592–600. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Carnevale, T.J.; Garfinkel, A.; Walter, D.O.; Womack, C.J. Estimation of critical power with nonlinear and linear models. Med. Sci. Sports Exerc. 1995, 27, 1430–1438. [Google Scholar] [CrossRef]
- Miura, A.; Sato, H.; Sato, H.; hipp, B.J.; Fukuba, Y. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics 2000, 43, 133–141. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cerezuela-Espejo, V.; Morán-Navarro, R.; Martínez-Cava, A.; Conesa, E.; Courel-Ibáñez, J. A New Short Track Test to Estimate the VO2max and Maximal Aerobic Speed in Well-Trained Runners. J. Strength Cond. Res. 2019, 33, 1216–1221. [Google Scholar] [CrossRef]
- Castagna, C.; Manzi, V.; Impellizzeri, F.; Chaouachi, A.; Abdelkrim, N.B.; Ditroilo, M. Validity of an on-court lactate threshold test in young basketball players. J. Strength Cond. Res. 2010, 24, 2434–2439. [Google Scholar] [CrossRef]
- St Clair Gibson, A.; Broomhead, S.; Lambert, M.; Hawley, J. Prediction of maximal oxygen uptake from a 20-m shuttle run as measured directly in runners and squash players. J. Sports Sci. 1998, 16, 331–335. [Google Scholar] [CrossRef]
- Heydenreich, J.; Schutz, Y.; Kayser, B.; Melzer, K. Validity of the Actiheart step test for the estimation of maximum oxygen consumption in endurance athletes and healthy controls. Curr. Issues Sport. Sci. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Bennett, H.; Parfitt, G.; Davison, K.; Eston, R. Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Med. 2016, 46, 737–750. [Google Scholar] [CrossRef]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of prescribing relative exercise intensity: Physiological and practical considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef]
- Dwyer, J.; Bybee, R. Heart rate indices of the anaerobic threshold. Med. Sci. Sports Exerc. 1983, 15, 72–76. [Google Scholar] [CrossRef]
- Meyer, T.; Gabriel, H.; Kindermann, W. Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med. Sci. Sports Exerc. 1999, 31, 1342–1345. [Google Scholar] [CrossRef]
- Scharhag-Rosenberger, F.; Meyer, T.; Gäßler, N.; Faude, O.; Kindermann, W. Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. J. Sci. Med. Sport 2010, 13, 74–79. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Jones, A.M.; Burnley, M. Application of critical power in sport. Int. J. Sports Physiol. Perform. 2011, 6, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, R.W. Applying the critical speed concept to racing strategy and interval training prescription. Int. J. Sports Physiol. Perform. 2016, 11, 842–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.J.; Pettitt, R.W.; Kramer, M. High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity. J. Sci. Sport Exerc. 2020, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dawson, M.C. CrossFit: Fitness cult or reinventive institution? Int. Rev. Sociol. Sport 2017, 52, 361–379. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Glassman, G. Understanding Crossfit. Available online: http://library.crossfit.com/free/pdf/CFJ_56-07_Understanding.pdf (accessed on 22 October 2020).
- CrossFit®. Statistics From the 2016 Open. Available online: https://games.crossfit.com/video/statistics-2016-open (accessed on 23 January 2018).
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological differences between advanced CrossFit athletes, recreational CrossFit participants, and physically-active adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef] [Green Version]
- Serafini, P.R.; Feito, Y.; Mangine, G.T. Self-reported measures of strength and sport-specific skills distinguish ranking in an international online fitness competition. J. Strength Cond. Res. 2018, 32, 3474–3484. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit(®) benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.E.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-Squat as a Determinant of Performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological Predictors of Competition Performance in CrossFit Athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef] [PubMed]
Total | Males | Females | |
---|---|---|---|
N Age (years) | 25 27.6 ± 4.5 | 17 27.6 ± 5.1 | 8 27.5 ± 3.3 |
Height (cm) | 174.5 ± 18.3 | 178.8 ± 20.3 | 165.4 ± 8.6 |
Weight (kg) | 77.4 ± 14.8 | 83.5 ± 12.9 | 64.5 ± 9.1 |
Body Fat (%) | 15.7 ± 6.5 | 13.3 ± 6.4 | 21.1 ± 2.6 |
Observed VO2max (ml/kg/min−1) † | Predicted VO2max (ml/kg/min−1) † | TE (mL/kg/min−1) | %CV | ICC | Lower 95% CI (ml/kg/min−1) | Upper 95% CI (ml/kg/min−1) |
---|---|---|---|---|---|---|
47.71 ± 6.54 a | 47.71 ± 5.70 a | 2.26 | 4.90 | 0.864 | 1.77 | 3.15 |
Variable | B | SEB | β | Observed Power |
---|---|---|---|---|
CS (m/s) | 8.449 | 1.323 | 0.709 ** | 0.99 |
Sex (M/F) | 4.387 | 1.525 | 0.320 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dexheimer, J.D.; Brinson, S.J.; Pettitt, R.W.; Schroeder, E.T.; Sawyer, B.J.; Jo, E. Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports 2020, 8, 155. https://doi.org/10.3390/sports8120155
Dexheimer JD, Brinson SJ, Pettitt RW, Schroeder ET, Sawyer BJ, Jo E. Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports. 2020; 8(12):155. https://doi.org/10.3390/sports8120155
Chicago/Turabian StyleDexheimer, Joshua D., Shane J. Brinson, Robert W. Pettitt, E. Todd Schroeder, Brandon J. Sawyer, and Edward Jo. 2020. "Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes" Sports 8, no. 12: 155. https://doi.org/10.3390/sports8120155
APA StyleDexheimer, J. D., Brinson, S. J., Pettitt, R. W., Schroeder, E. T., Sawyer, B. J., & Jo, E. (2020). Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports, 8(12), 155. https://doi.org/10.3390/sports8120155