Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Preferred Music
2.4. Measurements
2.4.1. Vameval Test
2.4.2. 6 Min Self-Paced Run Test
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noakes, T.D. Time to move beyond a brainless exercise physiology: The evidence for complex regulation of human exercise performance. Appl. Physiol. Nutr. Metab. 2011, 36, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Abbiss, C.; Laursen, P.B. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Lucia, A. Running economy: The forgotten factor in elite performance. Sports Med. 2007, 37, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Halperin, I.; Aboodarda, S.J.; Basset, F.A.; Byrne, J.M.; Behm, D.G. Pacing strategies during repeated maximal voluntary contractions. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 114, 1413–1420. [Google Scholar] [CrossRef]
- Tucker, R. The anticipatory regulation of performance: The physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br. J. Sports Med. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Hamilton, A.R.; Behm, D.G. The effect of prior knowledge of test endpoint on non-local muscle fatigue. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 117, 651–663. [Google Scholar] [CrossRef]
- Tomazini, F.; Pasqua, L.A.; Damasceno, M.V.; Silva-Cavalcante, M.D.; De Oliveira, F.R.; Lima-Silva, A.; Pasqua, L.A. Head-to-head running race simulation alters pacing strategy, performance, and mood state. Physiol. Behav. 2015, 149, 39–44. [Google Scholar] [CrossRef]
- Atkinson, G.; Wilson, D.; Eubank, M. Effects of Music on Work-Rate Distribution During a Cycling Time Trial. Int. J. Sports Med. 2004, 25, 611–615. [Google Scholar] [CrossRef]
- Maddigan, M.E.; Sullivan, K.M.; Halperin, I.; A Basset, F.; Behm, D.G. High tempo music prolongs high intensity exercise. Peer J. 2019, 6, e6164. [Google Scholar] [CrossRef]
- Barwood, M.J.; Weston, N.J.; Thelwell, R.; Page, J. A Motivational Music and Video Intervention Improves High-Intensity Exercise Performance. J. Sports Sci. Med. 2009, 8, 435–442. [Google Scholar]
- Edworthy, J.; Waring, H. The effects of music tempo and loudness level on treadmill exercise. Ergonomics 2006, 49, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.; Hutchinson, J.C.; Jones, L.; Farmer, H.L.; Ayhan, M.S.; Wilson, R.C.; Rance, J.; Hepworth, C.J.; Bailey, S.G. Psychological, psychophysical, and ergogenic effects of music in swimming. Psychol. Sport Exerc. 2013, 14, 560–568. [Google Scholar] [CrossRef]
- Bigliassi, M.; Estanislau, C.; Carneiro, J.G.; Ferreira, D.K.T.; Altimari, L.R. Music: A psychophysiological aid to physical exercise and sport. Arch. Med. Deporte. 2013, 30, 311–320. [Google Scholar]
- Cole, Z.; Maeda, H. Effects of Listening to Preferential Music on Sex Differences in Endurance Running Performance. Percept. Mot. Ski. 2015, 121, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.S.C.; Lambert, E.V.; Rauch, L.H.G.; Tucker, R.; Baden, D.A.; Foster, C.; Noakes, T.D.; Gibson, A.C.S. The Role of Information Processing Between the Brain and Peripheral Physiological Systems in Pacing and Perception of Effort. Sports Med. 2006, 36, 705–722. [Google Scholar] [CrossRef] [PubMed]
- Lima-Silva, A.; Silva-Cavalcante, M.D.; Pires, F.O.; Bertuzzi, R.; Oliveira, R.; Bishop, D.J. Listening to Music in the First, but not the Last 1.5 km of a 5-km Running Trial Alters Pacing Strategy and Improves Performance. Int. J. Sports Med. 2012, 33, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.; Ljunggren, G.; Ceci, R. The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Graefe’s Arch. Clin. Exp. Ophthalmol. 1985, 54, 343–349. [Google Scholar] [CrossRef]
- Szmedra, L.; Bacharach, D. Effect of Music on Perceived Exertion, Plasma Lactate, Norepinephrine and Cardiovascular Hemodynamics during Treadmill Running. Int. J. Sports Med. 1998, 19, 32–37. [Google Scholar] [CrossRef]
- Van Dyck, E.; Leman, M. Ergogenic Effect of Music during Running Performance. Ann. Sports Med. Res. 2016, 3, 1082. [Google Scholar]
- Elliott, D.; Carr, S.; Orme, D. The effect of motivational music on sub-maximal exercise. Eur. J. Sport Sci. 2005, 5, 97–106. [Google Scholar] [CrossRef]
- Thakare, A.E.; Mehrotra, R.; Singh, A. Effect of music tempo on exercise performance and heart rate among young adults. Int. J. Physiol. Pathophysiol. Pharmacol. 2017, 9, 35–39. [Google Scholar] [PubMed]
- Yamashita, S.; Iwai, K.; Akimoto, T.; Sugawara, J.; Kono, I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J. Sports Med. Phys. Fit. 2006, 46, 425–430. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, G.; Léger, L. How to Evaluate and Develop Your Aerobic Capacities. 1993. Available online: https://scholar.google.com/scholar_lookup?hl=en&publication_year=1993&pages=123&author=G.+Cazorla&author=L.+Leger&title=Comment+%C3%A9valuer+et+d%C3%A9velopper+vos+capacit%C3%A9s+a%C3%A9robies%3A+%C3%A9preuve+progressive+de+course+navette%2C+%C3%A9preuve+progressive+de+course+sur+piste+VAMEVAL+%5BHow+to+evaluate+and+develop+your+aerobic+capacity%3A+progressive+shuttle+run+test%2C+progressive+test+track+racing+VAMEVAL%5D (accessed on 11 May 2020).
- Ayan, C.; Cancela, J.M.; Romero, S.; Alonso, S. Reliability of Two Field-Based Tests for Measuring Cardiorespiratory Fitness in Preschool Children. J. Strength Cond. Res. 2015, 29, 2874–2880. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.; Askew, C.D.; Abel, T.; Strüder, H.K. Exercise, music, and the brain: Is there a central pattern generator? J. Sports Sci. 2010, 28, 1337–1343. [Google Scholar] [CrossRef]
- Fritz, T.H.; Hardikar, S.; Demoucron, M.; Niessen, M.; Demey, M.; Giot, O.; Li, Y.; Haynes, J.-D.; Villringer, A.; Leman, M. Musical agency reduces perceived exertion during strenuous physical performance. Proc. Natl. Acad. Sci. USA 2013, 110, 17784–17789. [Google Scholar] [CrossRef] [Green Version]
- Bacon, C.; Myers, T.R.; Karageorghis, C.I. Effect of music-movement synchrony on exercise oxygen consumption. J. Sports Med. Phys. Fit. 2012, 52, 359–365. [Google Scholar]
- Lee, S.; Kimmerly, D.S. Influence of music on maximal self-paced running performance and passive post-exercise recovery rate. J. Sports Med. Phys. Fit. 2014, 56, 39–48. [Google Scholar]
- Dyer, B.J.; Mc Kune, A. Effects of Music Tempo on Performance, Psychological, and Physiological Variables during 20 Km Cycling in Well-Trained Cyclists. Percept. Mot. Ski. 2013, 117, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Eston, R.G. Use of Ratings of Perceived Exertion in Sports. Int. J. Sports Physiol. Perform. 2012, 7, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control | Music | p Value | ES | |
---|---|---|---|---|
HRpeak (beat/min) | 191.3 ± 8.2 | 190.4 ± 8.5 | 0.619 | - |
HRmean (beat/min) | 178.7 ± 9.5 | 179.1 ± 7.1 | 0.791 | - |
RPE post-test | 16.9 ± 1.3 | 17.3 ± 1.5 | 0.379 | - |
Lactate (mmol/L) | 17.3 ± 1.4 | 15.9 ± 1.3 | 0.006 * | 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebabli, N.; Granacher, U.; Selmi, M.A.; Al-Haddabi, B.; Behm, D.G.; Chaouachi, A.; Haj Sassi, R. Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults. Sports 2020, 8, 61. https://doi.org/10.3390/sports8050061
Jebabli N, Granacher U, Selmi MA, Al-Haddabi B, Behm DG, Chaouachi A, Haj Sassi R. Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults. Sports. 2020; 8(5):61. https://doi.org/10.3390/sports8050061
Chicago/Turabian StyleJebabli, Nidhal, Urs Granacher, Mohamed Amin Selmi, Badriya Al-Haddabi, David G. Behm, Anis Chaouachi, and Radhouane Haj Sassi. 2020. "Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults" Sports 8, no. 5: 61. https://doi.org/10.3390/sports8050061
APA StyleJebabli, N., Granacher, U., Selmi, M. A., Al-Haddabi, B., Behm, D. G., Chaouachi, A., & Haj Sassi, R. (2020). Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults. Sports, 8(5), 61. https://doi.org/10.3390/sports8050061