Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Athletes
2.2. Muscle Architecture and Quadriceps’ Ultrasonography
2.3. Countermovement Jumping
2.4. Dual Energy X-Ray Absorptiometry
2.5. Olympic Weightlifting Performance
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Storey, A.; Smith, H.K. Unique aspects of competitive weightlifting: Performance, training and physiology. Sports Med. 2012, 42, 769–790. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.K.; Wu, M.T.; Huang, C.H.; Wu, J.H.; Guo, L.W.; Wu, W.L. The analysis of upper limb movement and EMG activation during the snatch under various loading conditions. J. Mech. Med. Biol. 2013, 13. [Google Scholar] [CrossRef]
- Campos, J.; Poletaev, P.; Cuesta, A.; Pablos, C.; Carratalà, V. Kinematical analysis of the snatch in elite male junior weightlifters of different weight categories. J. Strength Cond. Res. 2006, 20, 843–850. [Google Scholar] [CrossRef]
- Garhammer, J. Power production by Olympic weightlifters. Med. Sci. Sports Exerc. 1980, 12, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Moritani, T. Motor unit and motoneurone excitability during explosive movement. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell Scientific Publications: Oxford, UK, 2005; pp. 27–49. ISBN 0-632-05911-7. [Google Scholar]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Arnaoutis, G.; Hantjicharalambous, M.; Terzis, G. Rate of force development, muscle architecture and performance in elite weightlifters. Int. J. Sports Phys. Perf. 2020. accepted. [Google Scholar]
- Siahkouhian, M.; Hedayatneja, M. Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. J. Hum. Kin. 2010, 25, 125–131. [Google Scholar] [CrossRef]
- Hornsby, W.G.; Gentles, J.A.; MacDonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum strength, rate of force development, jump height, and peak power alterations in weightlifters across five months of training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Sandbakk, Ø.; Solli, G.S.; Holmberg, H.C. Sex differences in world-record performance: The influence of sport discipline and competition duration. Int. J. Sports Phys. Perf. 2018, 13, 2–8. [Google Scholar] [CrossRef]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Changes in muscle architecture and performance during a competitive season in female softball players. J. Strength Cond. Res. 2012, 26, 2655–2666. [Google Scholar] [CrossRef]
- Stasinaki, A.N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of force development and muscle architecture after fast and slow velocity eccentric training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Zaras, N.D.; Stasinaki, A.N.E.; Methenitis, S.K.; Krase, A.A.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Rate of force development, muscle architecture, and performance in young competitive track and field throwers. J. Strength Cond. Res. 2016, 30, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Blazevich, A.J.; Gill, N.D.; Zhou, S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J. Anat. 2016, 209, 289–310. [Google Scholar] [CrossRef]
- Noorkoiv, M.; Stavnsbo, A.; Aagaard, P.; Blazevich, A. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. J. Appl. Physiol. 2010, 109, 1974–1979. [Google Scholar] [CrossRef] [Green Version]
- Noorkoiv, M.; Nosaka, K.; Blazevich, A.J. Assessment of quadriceps muscle cross-section area by ultrasound extended-field-of-view imaging. Eur. J. Appl. Physiol. 2010, 109, 631–639. [Google Scholar] [CrossRef]
- Tsitkanou, S.; Spengos, K.; Stasinaki, A.N.; Zaras, N.; Bogdanis, G.; Papadimas, G.; Terzis, G. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand. J. Med. Sci. Sports. 2017, 27, 1317–1327. [Google Scholar] [CrossRef]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Chtourou, H.; Trabelsi, K.; Padulo, J.; Turki, M.; Abed, E.K.; Hoekelmann, A.; Hakim, A. Temporal specificity of training: Intra-day effects on biochemical responses and Olympic-Weightlifting performances. J. Sports Sci. 2014, 33, 358–368. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar] [CrossRef]
- McGuigan, M.A.; Kane, M.K. Reliability of performance of elite olympic weightlifters. J. Strength Cond. Res. 2004, 18, 650–653. [Google Scholar] [CrossRef]
- Erdağı, K.; Poyraz, N. The determination of the cross-sectional area of the lumbar erector spinae muscles of Olympic style weightlifting athletes by using MRI. J. Back Musc. Rehabil. 2019. [Google Scholar] [CrossRef]
- Roberts, B.M.; Nuckols, G.; Krieger, J.W. Sex differences in resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2020, 34, 1448–1460. [Google Scholar] [CrossRef]
- McMahon, J.J.; Turner, A.; Comfort, P. Relationships between lower body muscle structure and maximal power clean performance. J. Train. 2015, 4, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Berton, R.; Lixandrão, M.E.; Pinto e Silva, C.M.; Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: a meta-analysis. J. Sports Sci. 2018, 36, 2038–2044. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Gonzalo-Skok, O.; Carrasquilla, I.; Asián-Clemente, J.; Santalla, A.; Lara-Lopez, P.; Núñez, F.J. Relationships between change of direction, sprint, jump, and squat power performance. Sports 2020, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Carlock, M.J.; Smith, S.L.; Hartman, M.J.; Morris, R.T.; Ciroslan, D.A.; Pierce, K.C.; Newton, R.U.; Harman, U.A.; Sands, W.A.; Stone, M.H. The relationship between vertical jump power estimates and weightlifting ability: A field-test approach. J. Strength Cond. Res. 2004, 18, 534–539. [Google Scholar] [CrossRef]
Variables | ICC | Lower Bound | Upper bound | Sig. |
---|---|---|---|---|
CMJheight | 0.970 | 0.850 | 0.993 | 0.001 |
CMJpower | 0.990 | 0.991 | 0.998 | 0.000 |
CMJw/kg | 0.989 | 0.987 | 0.997 | 0.000 |
CMJvelocity | 0.967 | 0.850 | 0.993 | 0.001 |
Total lean mass | 0.995 | 0.966 | 0.999 | 0.000 |
Legs lean mass | 0.997 | 0.986 | 0.999 | 0.000 |
Trunk lean mass | 0.969 | 0.789 | 0.992 | 0.001 |
Arms lean mass | 0.990 | 0.931 | 0.999 | 0.000 |
VL thickness | 0.970 | 0.856 | 0.987 | 0.001 |
VL angle | 0.880 | 0.609 | 0.965 | 0.001 |
VL fascicle length | 0.840 | 0.470 | 0.955 | 0.001 |
VI thickness | 0.928 | 0.799 | 0.975 | 0.001 |
VL CSA | 0.962 | 0.835 | 0.991 | 0.001 |
VI CSA | 0.956 | 0.814 | 0.99 | 0.000 |
VM CSA | 0.872 | 0.479 | 0.971 | 0.001 |
RF CSA | 0.949 | 0.725 | 0.989 | 0.001 |
T CSA | 0,974 | 0.892 | 0.994 | 0.000 |
Performance and Body Composition | Values |
---|---|
Snatch (kg) | 63.8 ± 16.2 |
Clean and jerk (kg) | 79.4 ± 18.7 |
Total (kg) | 143.2 ± 34.7 |
CMJheight (cm) | 29.6 ± 5.3 |
CMJpower (W) | 2623.1 ± 418.7 |
CMJw/kg (W/kg) | 41.4 ± 4.2 |
CMJvelocity (m/sec) | 2.5 ± 0.4 |
Total lean mass (kg) | 45.9 ± 3.9 |
Legs lean mass (kg) | 16.5 ± 1.6 |
Trunk lean mas (kg) | 21.8 ± 2.0 |
Arms lean mass (kg) | 5.14 ± 0.5 |
Weightlifting | Total Lean Mass | Legs Lean Mass | Arms Lean Mass | Trunk Lean Mass | CMJ Height | CMJ Power | CMJ P·kg−1 | CMJ Velocity |
---|---|---|---|---|---|---|---|---|
Snatch | 0.853 # | 0.872 # | 0.835 # | 0.959 * | 0.756 # | 0.933 * | 0.879 # | 0.751 # |
Clean and Jerk | 0.791 # | 0.809 # | 0.802 # | 0.929 * | 0.816 # | 0.896 # | 0.919 * | 0.811 # |
Total | 0.823 # | 0.841 # | 0.820 # | 0.946 * | 0.791 # | 0.916 * | 0.903 * | 0.785 # |
Weightlifting | VL Thickness | VL Angle | VL Length | VI Thickness | CSA VL | CSA VI | CSA VM | CSA RF | CSA Total |
---|---|---|---|---|---|---|---|---|---|
Snatch | 0.430 † | 0.459 † | 0.517 ‡ | 0.151 ˠ | 0.361 † | 0.624 ‡ | 0.241 ˠ | 0.610 ‡ | 0.732 # |
Clean and Jerk | 0.337 † | 0.436 † | 0.414 † | 0.094 ⁺ | 0.271 ˠ | 0.593 ‡ | 0.137 ˠ | 0.565 ‡ | 0.680 ‡ |
Total | 0.381 † | 0.448 † | 0.464 † | 0.121 ˠ | 0.314 † | 0.609 ‡ | 0.186 ˠ | 0.588 ‡ | 0.706 # |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaras, N.; Stasinaki, A.-N.; Spiliopoulou, P.; Hadjicharalambous, M.; Terzis, G. Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports 2020, 8, 67. https://doi.org/10.3390/sports8050067
Zaras N, Stasinaki A-N, Spiliopoulou P, Hadjicharalambous M, Terzis G. Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports. 2020; 8(5):67. https://doi.org/10.3390/sports8050067
Chicago/Turabian StyleZaras, Nikolaos, Angeliki-Nikoletta Stasinaki, Polyxeni Spiliopoulou, Marios Hadjicharalambous, and Gerasimos Terzis. 2020. "Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters" Sports 8, no. 5: 67. https://doi.org/10.3390/sports8050067
APA StyleZaras, N., Stasinaki, A. -N., Spiliopoulou, P., Hadjicharalambous, M., & Terzis, G. (2020). Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports, 8(5), 67. https://doi.org/10.3390/sports8050067