Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Heart Rate Measurements
2.4. Statistical Analysis
3. Results
3.1. Circuit Exercise Session
3.2. Shuttle Run Test
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice. Special Recommendations for Middle- and Long-Distance Running. Part I: Aerobic Interval Training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L. Interval Training for Performance: A Scientific and Empirical Practice: Special Recommendations for Middle- and Long-Distance Running. Part II: Anaerobic Interval Training. Sports Med. 2001, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Jenkins, D.G. The Scientific Basis for High-Intensity Interval Training: Optimising Training Programmes and Maximising Performance in Highly Trained Endurance Athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christmass, M.A.; Dawson, B.; Goodman, C.; Arthur, P.G. Brief intense exercise followed by passive recovery modifies the pattern of fuel use in humans during subsequent sustained intermittent exercise. Acta Physiol. Scand. 2001, 172, 39–52. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K. Contribution of Phosphocreatine and Aerobic Metabolism to Energy Supply during Repeated Sprint Exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef]
- Ratel, S.; Blazevich, A.J. Are Prepubertal Children Metabolically Comparable to Well-Trained Adult Endurance Athletes? Sports Med. 2017, 47, 1477–1485. [Google Scholar] [CrossRef]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Baquet, G.; Gamelin, F.X.; Aucouturier, J.; Berthoin, S. Cardiorespiratory Responses to Continuous and Intermittent Exercises in Children. Int. J. Sports Med. 2017, 38, 755–762. [Google Scholar] [CrossRef]
- Baquet, G.; Guinhouya, C.; Dupont, G.; Nourry, C.; Berthoin, S. Effects of a Short-Term Interval Training Program on Physical Fitness in Prepubertal Children. J. Strength Cond. Res. 2004, 708–713. [Google Scholar] [CrossRef]
- Greenlee, T.A.; Greene, D.R.; Ward, N.J.; Reeser, G.E.; Allen, C.M.; Baumgartner, N.W.; Cohen, N.J.; Kramer, A.F.; Barbey, A.K.; Hillman, C.H. Effectiveness of a 16-Week High-Intensity Cardio-Resistance Training (HICRT) Program in Adults. Med. Sci. Sports Exerc. 2016, 48, 860. [Google Scholar] [CrossRef]
- Wilke, J.; Kaiser, S.; Niederer, D.; Kalo, K.; Engeroff, T.; Morath, C.; Vogt, L.; Banzer, W. Effects of High-Intensity Functional Circuit Training on Motor Function and Sport Motivation in Healthy, Inactive Adults. Scand. J. Med. Sci. Sports 2019, 29, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Lloyd, R.S. The Physiological Demands of Youth Artistic Gymnastics; Applications to Strength and Conditioning. Strength Cond. J. 2018, 1. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kang, J.; Ratamess, N.A.; Farrell, A.C.; Belfert, M.; Duffy, S.; Jenson, C.; Bush, J. Acute Cardiometabolic Responses to Multi-Modal Integrative Neuromuscular Training in Children. J. Funct. Morphol. Kinesiol. 2019, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Bogdanis, G.C.C.; Nevill, M.E.E.; Boobis, L.H.H.; Lakomy, H.K.K.A.; Nevill, A.M.M. Recovery of Power Output and Muscle Metabolites Following 30 s of Maximal Sprint Cycling in Man. J. Physiol. 1995, 482, 467–480. [Google Scholar] [CrossRef]
- Marina, M.; Rodríguez, F.A. Physiological Demands of Young Women’s Competitive Gymnastic Routines. Biol. Sport 2014. [Google Scholar] [CrossRef] [Green Version]
- Douda, H.T.; Toubekis, A.G.; Avloniti, A.A.; Tokmakidis, S.P. Physiological and Anthropometric Determinants of Rhythmic Gymnastics Performance. Int. J. Sports Physiol. Perform. 2008, 3, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Sands, W.A.; McNeal, J.R. A Minimalist Approach to Conditioning for Women’s Gymnastics. In USA Gymnastics Congress Proceedings Book; USA Gymnastics: Indianapolis, IN, USA, 1997; pp. 78–80. [Google Scholar]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The Multistage 20 Metre Shuttle Run Test for Aerobic Fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Zafeiridis, A.; Sarivasiliou, H.; Dipla, K.; Vrabas, I.S. The Effects of Heavy Continuous versus Long and Short Intermittent Aerobic Exercise Protocols on Oxygen Consumption, Heart Rate, and Lactate Responses in Adolescents. Eur. J. Appl. Physiol. 2010, 110, 17–26. [Google Scholar] [CrossRef]
- Mandigout, S.; Melin, A.; Lecoq, A.M.; Courteix, D.; Obert, P. Effect of Two Aerobic Training Regimens on the Cardiorespiratory Response of Prepubertal Boys and Girls. Acta Paediatr. 2002, 91, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A Power Primer. Psychol Bull. 1992, 155–159. [Google Scholar] [CrossRef]
- Moeskops, S.; Read, P.; Oliver, J.; Lloyd, R. Individual Responses to an 8-Week Neuromuscular Training Intervention in Trained Pre-Pubescent Female Artistic Gymnasts. Sports 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratel, S.; Williams, C.A.; Oliver, J.; Armstrong, N. Effects of Age and Recovery Duration on Performance during Multiple Treadmill Sprints. Int. J. Sports Med. 2006, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C. Effects of Physical Activity and Inactivity on Muscle Fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [Green Version]
- Rowland, T.W. Aerobic Response to Endurance Training in Prepubescent Children: A Critical Analysis. Med. Sci. Sports Exerc. 1985, 17, 493–497. [Google Scholar] [CrossRef]
- Zanconato, S.; Cooper, D.M.; Armon, Y. Oxygen Cost and Oxygen Uptake Dynamics and Recovery with 1 Min of Exercise in Children and Adults. J. Appl. Physiol. 1991, 71, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Midgley, A.W.; Mc Naughton, L.R. Time at or near VO2max during Continuous and Intermittent Running: A Review with Special Reference to Considerations for the Optimisation of Training Protocols to Elicit the Longest Time at or near VO2max. J. Sports Med. Phys. Fit. 2006, 46, 1–14. [Google Scholar]
- Åstrand, I.; Åstrand, P.-O.; Christensen, E.H.; Hedman, R. Intermittent Muscular Work. Acta Physiol. Scand. 1960, 48, 448–453. [Google Scholar] [CrossRef]
- Bogdanis, G.C.C.; Nevill, M.E.E.; Lakomy, H.K.A.K.; Boobis, L.H.H. Power Output and Muscle Metabolism during and Following Recovery from 10 and 20 s of Maximal Sprint Exercise in Humans. Acta Physiol. Scand. 1998, 163, 261–272. [Google Scholar] [CrossRef]
- Bendiksen, M.; Williams, C.A.; Hornstrup, T.; Clausen, H.; Kloppenborg, J.; Shumikhin, D.; Brito, J.; Horton, J.; Barene, S.; Jackman, S.R.; et al. Heart Rate Response and Fitness Effects of Various Types of Physical Education for 8- to 9-Year-Old Schoolchildren. Eur. J. Sport Sci. 2014, 14, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Kang, J.; Ratamess, N.A.; Farrell, A.; Ellis, N.; Vought, I.; Bush, J. Acute Cardiometabolic Responses to Medicine Ball Exercise in Children. Int. J. Exerc. Sci. 2018, 11, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Berthoin, S.; Baquet, G.; Dupont, G.; Van Praagh, E. Critical Velocity during Continuous and Intermittent Exercises in Children. Eur. J. Appl. Physiol. 2006, 98, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Christmass, M.A.; Dawson, B.; Arthur, P.G. Effect of Work and Recovery Duration on Skeletal Muscle Oxygenation and Fuel Use during Sustained Intermittent Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 436–447. [Google Scholar] [CrossRef]
- Birat, A.; Bourdier, P.; Piponnier, E.; Blazevich, A.J.; Maciejewski, H.; Duché, P.; Ratel, S. Metabolic and Fatigue Profiles Are Comparable Between Prepubertal Children and Well-Trained Adult Endurance Athletes. Front. Physiol. 2018, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Duché, P.; Laursen, P.B.; Ratel, S. Postexercise Heart Rate Recovery in Children: Relationship with Power Output, Blood PH, and Lactate. Appl. Physiol. Nutr. Metab. 2010, 35, 142–150. [Google Scholar] [CrossRef]
- Tonson, A.; Ratel, S.; Le Fur, Y.; Vilmen, C.; Cozzone, P.J.; Bendahan, D. Muscle Energetics Changes throughout Maturation: A Quantitative 31P-MRS Analysis. J. Appl. Physiol. 2010, 109, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Ohuchi, H.; Suzuki, H.; Yasuda, K.; Arakaki, Y.; Echigo, S.; Kamiya, T. Heart Rate Recovery after Exercise and Cardiac Autonomic Nervous Activity in Children. Pediatr. Res. 2000, 47, 329–335. [Google Scholar] [CrossRef] [Green Version]
Exercise Description | Number of Repetitions/Duration |
---|---|
1. From hanging on high bar leg raise in tuck position to dislocate in eagle grip (L-grip), release and land on the floor | 3 reps/7 s |
2. From cross support facing the end of a low beam (20 cm), lateral jumps across the length of the beam | 4 reps/7 s |
3. Forward roll, jump with half turn (180°), backward roll and jump with half turn (180°) (without pause or extra steps) | 3 reps/7 s |
4. From front support on parallel bars, forward swing to straddle position and straddle travel across the length of the parallel bars | 3 reps/7 s |
5. From front support on low bar cast backward to horizontal | 3 reps/7 s |
Header | Set 1 | Set 2 | p Value | Cohen’s d |
---|---|---|---|---|
Peak heart rate (bpm) | 192 ± 7 | 196 ± 8 | <0.001 | 0.55 |
Mean heart rate (bpm) | 171 ± 8 | 186 ± 6 | <0.001 | 2.19 |
Time spent >80% 1 HRmax (min) | 4.11 ± 1.19 | 5.09 ± 0.36 | <0.001 | 1.15 |
Time spent >90% 1 HRmax (min) | 2.01 ± 1.16 | 3.36 ± 1.65 | <0.001 | 0.98 |
1 min heart rate recovery (bpm) | 54 ± 13 | 54 ± 12 | 0.918 | 0.00 |
2 min heart rate recovery (bpm) | 72 ± 13 | 69 ± 13 | 0.273 | 0.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salagas, A.; Donti, O.; Katsikas, C.; Bogdanis, G.C. Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts. Sports 2020, 8, 68. https://doi.org/10.3390/sports8050068
Salagas A, Donti O, Katsikas C, Bogdanis GC. Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts. Sports. 2020; 8(5):68. https://doi.org/10.3390/sports8050068
Chicago/Turabian StyleSalagas, Andreas, Olyvia Donti, Christos Katsikas, and Gregory C. Bogdanis. 2020. "Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts" Sports 8, no. 5: 68. https://doi.org/10.3390/sports8050068
APA StyleSalagas, A., Donti, O., Katsikas, C., & Bogdanis, G. C. (2020). Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts. Sports, 8(5), 68. https://doi.org/10.3390/sports8050068