Can Countermovement Jump Neuromuscular Performance Qualities Differentiate Maximal Horizontal Deceleration Ability in Team Sport Athletes?
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Procedures
2.3.1. Anthropometrics
2.3.2. Maximal Horizontal Sprint Test
2.3.3. Maximal Horizontal Deceleration Test
2.3.4. Radar Data Analyses
2.3.5. Countermovement Jump (CMJ)
2.3.6. Force Platform Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murtagh, C.F.; Naughton, R.J.; McRobert, A.P.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. A Coding System to Quantify Powerful Actions in Soccer Match Play: A Pilot Study. Res. Q. Exerc. Sport 2019, 90, 234–243. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sport. Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Thomas, C.; Dos’Santos, T.; McMahon, J.; Graham-Smith, P. The Role of Eccentric Strength in 180° Turns in Female Soccer Players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Dalen, T.; Ingebrigtsen, J.; Ettema, G.; Hjelde, G.H.; Wisløff, U. Player Load, Acceleration, and Deceleration during Forty-Five Competitive Matches of Elite Soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training Load Monitoring in Team Sports: A Novel Framework Separating Physiological and Biomechanical Load-Adaptation Pathways. Sport. Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Harper, D.J.; Kiely, J. Damaging Nature of Decelerations: Do We Adequately Prepare Players? BMJ Open Sport Exerc. Med. 2018, 4, e000379. [Google Scholar] [CrossRef] [Green Version]
- Graham-Smith, P.; Rumpf, M.; Jones, P. Assessment of Deceleration Ability and Relationship to Approach Speed and Eccentric Strength. In Proceedings of the ISBS-Conference Proceedings Archive, Auckland, New Zealand, 10–14 September 2018; Available online: https://commons.nmu.edu/isbs/vol36/iss1/3/ (accessed on 7 September 2018).
- Harper, D.J.; Jordan, A.R.; Kiely, J. Relationships between Eccentric and Concentric Knee Strength Capacities and Maximal Linear Deceleration Ability in Male Academy Soccer Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Naylor, J.; Greig, M. A Hierarchical Model of Factors Influencing a Battery of Agility Tests. J. Sports Med. Phys. Fitness 2015, 55, 1329–1335. [Google Scholar]
- Simperingham, K.D.; Cronin, J.B.; Ross, A. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations. Sport. Med. 2016, 46, 1619–1645. [Google Scholar] [CrossRef]
- Kovacs, M.S.; Roetert, E.P.; Ellenbecker, T.S. Efficient Deceleration: The Forgotten Factor in Tennis-Specific Training. Strength Cond. J. 2008, 30, 58–69. [Google Scholar] [CrossRef]
- Eagles, A.N.; Sayers, M.G.L.; Bousson, M.; Lovell, D.I. Current Methodologies and Implications of Phase Identification of the Vertical Jump: A Systematic Review and Meta-Analysis. Sport. Med. 2015, 45, 1311–1323. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 1. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, M.D.; Sundstrup, E.; Randers, M.B.; Kjær, M.; Andersen, L.L.; Krustrup, P.; Aagaard, P. The Effect of Strength Training, Recreational Soccer and Running Exercise on Stretch-Shortening Cycle Muscle Performance during Countermovement Jumping. Hum. Mov. Sci. 2012, 31, 970–986. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the Eccentric Phase Contribute to Improved Stretch-Shorten Cycle Performance after Training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijowksi, K.N.; Capps, C.R.; Goodman, C.L.; Erickson, T.M.; Knorr, D.P.; Triplett, N.T.; Awelewa, O.O.; McBride, J.M. Short-Term Resistance and Plyometric Training Improves Eccentric Phase Kinetics in Jumping. J. Strength Cond. Res. 2015, 29, 2186–2196. [Google Scholar] [CrossRef]
- Laffaye, G.; Wagner, P.P.; Tombleson, T.I.L. Countermovement Jump Height: Gender and Sport-Specific Differences in the Force-Time Variables. J. Strength Cond. Res. 2014, 28, 1096–1105. [Google Scholar] [CrossRef]
- Chalitsios, C.; Nikodelis, T.; Panoutsakopoulos, V.; Chassanidis, C.; Kollias, I. Classification of Soccer and Basketball Players’ Jumping Performance Characteristics: A Logistic Regression Approach. Sports 2019, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Mayberry, J.K.; Patterson, B.; Wagner, P. Improving Vertical Jump Profiles Through Prescribed Movement Plans. J. Strength Cond. Res. 2018, 32, 1619–1626. [Google Scholar] [CrossRef]
- Jordan, M.J.; Aagaard, P.; Herzog, W. A Comparison of Lower Limb Stiffness and Mechanical Muscle Function in Anterior Cruciate Ligament–Reconstructed, Elite, and Adolescent Alpine Ski Racers/Ski Cross Athletes. J. Sport Health Sci. 2018, 7, 416–424. [Google Scholar] [CrossRef]
- McMahon, J.J.; Murphy, S.; Rej, S.J.E.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef]
- McMahon, J.J.; Rej, S.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Hart, L.M.; Cohen, D.; Patterson, S.D.; Springham, M.; Reynolds, J.; Read, P. Previous Injury Is Associated with Heightened Countermovement Jump Force-time Asymmetries in Professional Soccer Players. Transl. Sport. Med. 2019, 2, 256–262. [Google Scholar] [CrossRef]
- Barker, L.A.; Harry, J.R.; Mercer, J.A. Relationships between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J. Strength Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef]
- Secomb, J.L.; Nimphius, S.; Farley, O.R.; Lundgren, L.; Tran, T.T.; Sheppard, J.M. Lower-Body Muscle Structure and Jump Performance of Stronger and Weaker Surfing Athletes. Int. J. Sports Physiol. Perform. 2016, 11, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Hewit, J.; Cronin, J.; Button, C.; Hume, P. Understanding Deceleration in Sport. Strength Cond. J. 2011, 33, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.B.; Templeton, R.L. Timing Light Height Affects Sprint Times. J. Strength Cond. Res. 2008, 22, 318–320. [Google Scholar] [CrossRef]
- Simperingham, K.D.; Cronin, J.B.; Pearson, S.N.; Ross, A. Reliability of Horizontal Force-Velocity-Power Profiling during Short Sprint-Running Accelerations Using Radar Technology. Sport. Biomech. 2019, 18, 88–99. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Tillin, N.A.; Pain, M.T.G.; Folland, J.P. Contraction Speed and Type Influences Rapid Utilisation of Available Muscle Force: Neural and Contractile Mechanisms. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef] [Green Version]
- Secomb, J.L.; Lundgren, L.E.; Farley, O.R.L.; Tran, T.T.; Nimphius, S.; Sheppard, J.M. Relationships between Lower-Body Muscle Structure and Lower-Body Strength, Power, and Muscle-Tendon Complex Stiffness. J. Strength Cond. Res. 2015, 29, 2221–2228. [Google Scholar] [CrossRef]
- Secomb, J.L.; Nimphius, S.; Farley, O.R.L.; Lundgren, L.E.; Tran, T.T.; Sheppard, J.M. Relationships between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes. J. Sports Sci. Med. 2015, 14, 691–697. [Google Scholar]
- Earp, J.E.; Kraemer, W.J.; Cormie, P.; Volek, J.S.; Maresh, C.M.; Joseph, M.; Newton, R.U. Influence of Muscle-Tendon Unit Structure on Rate of Force Development during the Squat, Countermovement, and Drop Jumps. J. Strength Cond. Res. 2011, 25, 340–347. [Google Scholar] [CrossRef]
- Earp, J.E.; Joseph, M.; Kraemer, W.J.; Newton, R.U.; Comstock, B.A.; Fragala, M.S.; Dunn-Lewis, C.; Solomon-Hill, G.; Penwell, Z.R.; Powell, M.D.; et al. Lower-Body Muscle Structure and Its Role in Jump Performance during Squat, Countermovement, and Depth Drop Jumps. J. Strength Cond. Res. 2010, 24, 722–729. [Google Scholar] [CrossRef]
- Welch, N.; Richter, C.; Franklyn-Miller, A.; Moran, K. Principal Component Analysis of the Biomechanical Factors Associated With Performance During Cutting. J. Strength Cond. Res. 2019, 1. [Google Scholar] [CrossRef]
- McBride, J.M.; McCaulley, G.O.; Cormie, P. Influence of Preactivity and Eccentric Muscle Activity on Concentric Performance during Vertical Jumping. J. Strength Cond. Res. 2008, 22, 750–757. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of the Reactive Strength Index Modified on Force– and Power–Time Curves. Int. J. Sports Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.J.; Jones, P.A.; Dos’Santos, T.; Comfort, P. Influence of Dynamic Strength Index on Countermovement Jump Force-, Power-, Velocity-, and Displacement-Time Curves. Sports 2017, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sport. Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Stasinaki, A.-N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of Force Development and Muscle Architecture after Fast and Slow Velocity Eccentric Training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Zacharia, E.; Spiliopoulou, P.; Methenitis, S.; Stasinaki, A.-N.; Zaras, N.; Papadopoulos, C.; Papadimas, G.; Karampatsos, G.; Bogdanis, G.C.; Terzis, G. Changes in Muscle Power and Muscle Morphology with Different Volumes of Fast Eccentric Half-Squats. Sports 2019, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Ripley, N.; Mcmahon, J.; Ripley, N.; Rej, S. Effect of Modulating Eccentric Leg Stiffness on Concentric Force-Velocity Characteristics Demonstrated in the Countermovement Jump. J. Sport Sci. 2016, 34, S19. [Google Scholar]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical Jump Performance Is Affected by the Velocity and Depth of the Countermovement. Sport. Biomech. 2019, 1–16. [Google Scholar] [CrossRef]
- Sánchez-Sixto, A.; Harrison, A.; Floría, P. Larger Countermovement Increases the Jump Height of Countermovement Jump. Sports 2018, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Cesar, G.M.; Sigward, S.M. Dynamic Stability during Running Gait Termination: Predictors for Successful Control of Forward Momentum in Children and Adults. Hum. Mov. Sci. 2016, 48, 37–43. [Google Scholar] [CrossRef]
- Cesar, G.M.; Sigward, S.M. Dynamic Stability during Running Gait Termination: Differences in Strategies between Children and Adults to Control Forward Momentum. Hum. Mov. Sci. 2015, 43, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sport. Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Arruda, A.F.S.; Guerriero, A.; Azevedo, P.H.S.M.; Loturco, I. Influence of Strength and Power Capacity on Change of Direction Speed and Deficit in Elite Team-Sport Athletes. J. Hum. Kinet. 2019, 68, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Bishop, C.; Turner, A.N.; Chavda, S.; Maloney, S.J.; Kingdom, U.; Maloney, S.; Kingdom, U. Train the Engine or Train the Brakes? Influence of Momentum on Change of Direction Deficit. Available online: http://eprints.mdx.ac.uk/29691/ (accessed on 20 April 2020).
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sport. Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of Flywheel Training on Strength-Related Variables: A Meta-Analysis. Sport. Med. Open 2018, 4, 55. [Google Scholar] [CrossRef]
- Marques, J.B.; Paul, D.J.; Graham-Smith, P.; Read, P.J. Change of Direction Assessment Following Anterior Cruciate Ligament Reconstruction: A Review of Current Practice and Considerations to Enhance Practical Application. Sport. Med. 2020, 50, 55–72. [Google Scholar] [CrossRef] [Green Version]
CMJ Variables | Description | CV% |
---|---|---|
Concentric | ||
Peak Force (N·kg−1) | Greatest force achieved during the concentric phase | 2.7 |
Mean Force (N·kg−1) | Mean force during the concentric phase | 1.5 |
Peak Power (W·kg−1) | Greatest power achieved during the concentric phase | 1.8 |
Mean Power (W·kg−1) | Mean power during the concentric phase | 2.1 |
Impulse (N·s·kg−1) | Concentric force exerted multiplied by the time taken | 1.4 |
Peak Velocity (m·s−1) | Greatest velocity achieved during the concentric phase | 1.1 |
Duration (ms) | Duration of the concentric phase | 2.6 |
Eccentric | ||
Peak Force (N·kg−1) | Greatest force achieved during the eccentric phase | 3.0 |
Peak Power (W·kg−1) | Greatest power during the eccentric phase from the start of the movement to zero velocity | 8.8 |
Mean Power (W·kg−1) | Mean power during the eccentric phase from the start of the movement to zero velocity | 4.7 |
Peak Velocity (m·s−1) | Greatest velocity achieved during the eccentric phase | 5.6 |
Duration (ms) | Time from the start of the movement to zero velocity | 3.4 |
Eccentric Deceleration | ||
Mean Force (N·kg−1) | Mean force from the greatest negative velocity to zero velocity at the end of the eccentric phase | 3.2 |
Impulse (N·s·kg−1) | Force exerted multiplied by the time taken from the greatest negative velocity to zero velocity at the end of the eccentric phase | 3.0 |
RFD (N·s−1·kg−1) | Rate of force development from the greatest negative velocity to zero velocity at the end of the eccentric phase | 9.3 |
Duration (ms) | Time from the maximum negative velocity to zero velocity at the end of the eccentric phase | 4.1 |
Other | ||
CMJ-Height (cm) | Maximal jump height computed using the flight time | 2.9 |
CMJ-Depth (cm) | Maximal displacement of countermovement | 2.9 |
RSI-Mod | Jump height (calculated from flight time) divided by contraction time | 4.3 |
Variable | High HDEC (n = 13) | Low HDEC (n = 14) | ES (ds) | High HBI (n = 14) | Low HBI (n = 13) | ES (ds) |
---|---|---|---|---|---|---|
Age (y) | 19.7 ± 1.6 | 20.4 ± 2.3 | 0.35 | 20.1 ± 2.2 | 19.1 ± 1.1 | 0.57 |
Body Mass (kg) | 72.7 ± 16.0 | 80.7 ± 12.4 | 0.56 | 85.2 ± 12.5 | 68.1 ± 10.6 | 1.47 ** |
Height (cm) | 180 ± 9 | 180 ± 8 | 0.00 | 183 ± 8 | 176 ± 5 | 1.04 ** |
Approach Velocity (m·s−1) | 7.80 ± 0.44 | 7.37 ± 0.28 | 1.18 ** | 7.66 ± 0.45 | 7.49 ± 0.38 | 0.41 |
Approach Momentum (kg·m·s−1) | 566 ± 123 | 594 ± 94 | 0.26 | 651 ± 90 | 507 ± 64 | 1.83 ** |
HDEC (m·s−2) | −4.99 ± 0.24 | −4.24 ± 0.41 | 2.21 ** | −4.72 ± 0.39 | −4.48 ± 0.59 | 0.48 |
HBI (N·s·kg−1) | −7.56 ± 1.66 | −7.22 ± 1.24 | 0.23 | −8.43 ± 1.15 | −6.26 ± 0.65 | 2.30 ** |
Variable | High HDEC (n = 13) | Low HDEC (n = 14) | ES (90% CI) | CL-ES | Descriptor | p-Value |
---|---|---|---|---|---|---|
Concentric | ||||||
Peak Force (N·kg−1) | 25.87 ± 2.42 | 23.53 ± 2.50 | 0.95 (0.71, 1.20) | 75% | Large | 0.02 * |
Mean Force (N·kg−1) | 20.07 ± 1.27 | 18.86 ± 1.39 | 0.91 (0.67, 1.14) | 74% | Large | 0.03 * |
Peak Power (W·kg−1) | 51.81 ± 7.17 | 46.98 ± 5.68 | 0.75 (0.54, 0.95) | 70% | Moderate | 0.06 |
Mean Power (W·kg−1) | 28.72 ± 2.84 | 25.92 ± 3.66 | 0.85 (0.62, 1.08) | 73% | Large | 0.04 * |
Impulse (N·s·kg−1) | 2.57 ± 0.27 | 2.44 ± 0.24 | 0.51 (0.34, 0.68) | 64% | Moderate | 0.20 |
Peak Velocity (m·s−1) | 2.71 ± 0.25 | 2.58 ± 0.21 | 0.57 (0.39, 0.75) | 65% | Moderate | 0.15 |
Duration (ms) | 249 ± 39 | 271 ± 39 | −0.56 (−0.39, −0.73) | 66% | Moderate | 0.16 |
Eccentric | ||||||
Peak Force (N·kg−1) | 24.66 ± 2.42 | 22.89 ± 2.47 | 0.72 (0.52, 0.92) | 70% | Moderate | 0.07 |
Peak Power (W·kg−1) | 17.47 ± 3.82 | 16.38 ± 4.86 | 0.25 (0.12, 0.38) | 57% | Small | 0.53 |
Mean Power (W·kg−1) | 6.35 ± 1.10 | 6.17 ± 1.16 | 0.16 (0.03, 0.29) | 54% | Trivial | 0.68 |
Peak Velocity (m·s−1) | −1.22 ± −0.21 | −1.18 ± 0.24 | −0.18 (−0.31, −0.05) | 55% | Trivial | 0.65 |
Duration (ms) | 485 ± 58 | 514 ± 88 | −0.39 (−0.24, −0.54) | 61% | Small | 0.33 |
Eccentric Deceleration | ||||||
Mean Force (N·kg−1) | 18.10 ± 1.41 | 17.30 ± 2.10 | 0.44 (0.28, 0.60) | 62% | Small | 0.26 |
Impulse (N·s·kg−1) | 2.88 ± 0.48 | 2.90 ± 0.44 | −0.04 (−0.16, 0.08) | 51% | Trivial | 0.91 |
RFD (N·s−1·kg−1) | 98.7 ± 34.4 | 81.3 ± 25.4 | 0.58 (0.40 to 0.76) | 66% | Moderate | 0.15 |
Duration (ms) | 160 ± 30 | 170 ± 30 | −0.33 (−0.19, −0.47) | 59% | Small | 0.40 |
Other | ||||||
CMJ Height (cm) | 35.7 ± 7.8 | 31.5 ± 6.3 | 0.59 (0.41, 0.77) | 66% | Moderate | 0.14 |
CMJ Depth (cm) | 31.7 ± 7.9 | 32.4 ± 6.7 | 0.11 (−0.02, 0.23) | 53% | Trivial | 0.94 |
RSI-Mod (m·s−1) | 0.45 ± 0.11 | 0.42 ± 0.09 | 0.27 (0.13, 0.40) | 58% | Small | 0.44 |
Variable | High HBI (n = 14) | Low HBI (n = 13) | ES (90% CI) | CL-ES | Descriptor | p-Value |
---|---|---|---|---|---|---|
Concentric | ||||||
Peak Force (N·kg−1) | 25.19 ± 2.56 | 24.09 ± 2.82 | 0.41 (0.26, 0.56) | 61% | Small | 0.30 |
Mean Force (N·kg−1) | 19.72 ± 1.15 | 19.14 ± 1.71 | 0.40 (0.25, 0.55) | 61% | Small | 0.31 |
Peak Power (W·kg−1) | 52.39 ± 7.12 | 45.98 ± 4.63 | 1.06 (0.79, 1.32) | 77% | Large | 0.01 * |
Mean Power (W·kg−1) | 28.76 ± 3.67 | 25.67 ± 2.65 | 0.96 (0.71, 1.21) | 75% | Large | 0.02 * |
Impulse (N·s·kg−1) | 2.62 ± 0.28 | 2.38 ± 0.15 | 1.06 (0.79, 1.32) | 78% | Large | 0.01 * |
Peak Velocity (m·s−1) | 2.76 ± 0.25 | 2.52 ± 0.15 | 1.15 (0.87, 1.43) | 79% | Large | 0.01 ** |
Duration (ms) | 262 ± 27 | 259 ± 51 | 0.07 (−0.05, 0.19) | 52% | Trivial | 0.85 |
Eccentric | ||||||
Peak Force (N·kg−1) | 24.37 ± 2.71 | 23.07 ± 2.30 | 0.52 (0.35, 0.69) | 64% | Moderate | 0.19 |
Peak Power (W·kg−1) | 18.34 ± 3.45 | 14.94 ± 4.46 | 0.86 (0.63, 1.09) | 73% | Large | 0.04 * |
Mean Power (W·kg−1) | 6.46 ± 0.68 | 5.72 ± 1.27 | 0.73 (0.53, 0.93) | 70% | Moderate | 0.07 |
Peak Velocity (m·s−1) | −1.30 ± 0.14 | −1.10 ± 0.25 | −1.00 (−0.75, −1.25) | 76% | Large | 0.02 * |
Duration (ms) | 493 ± 55 | 507 ± 95 | −0.18 (−0.05, −0.31) | 55% | Trivial | 0.64 |
Eccentric Deceleration | ||||||
Mean Force (N·kg−1) | 18.25 ± 1.96 | 17.08 ± 1.48 | 0.67 (0.48 to 0.86) | 68% | Moderate | 0.09 |
Impulse (N·s·kg−1) | 2.99 ± 0.30 | 2.79 ± 0.56 | 0.45 (0.29 to 0.61) | 62% | Small | 0.25 |
RFD (N·s−1·kg−1) | 93.6 ± 34.4 | 85.6 ± 27.2 | 0.26 (0.12 to 0.39) | 57% | Small | 0.51 |
Duration (ms) | 160 ± 20 | 160 ± 30 | 0.00 (−0.12 to 0.12) | 50% | Trivial | 1.00 |
Other | ||||||
CMJ Height (cm) | 36.8 ± 7.8 | 29.9 ± 4.5 | 1.07 (0.80, 1.34) | 78% | Large | 0.01 * |
CMJ Depth (cm) | −33.4 ± 5.7 | −30.1 ± 8.2 | −0.47 (−0.31, −0.63) | 63% | Small | 0.23 |
RSI-Mod (m·s−1) | 0.43 ± 0.09 | 0.43 ± 0.11 | 0.00 (−0.12, 0.12) | 50% | Trivial | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, D.J.; Cohen, D.D.; Carling, C.; Kiely, J. Can Countermovement Jump Neuromuscular Performance Qualities Differentiate Maximal Horizontal Deceleration Ability in Team Sport Athletes? Sports 2020, 8, 76. https://doi.org/10.3390/sports8060076
Harper DJ, Cohen DD, Carling C, Kiely J. Can Countermovement Jump Neuromuscular Performance Qualities Differentiate Maximal Horizontal Deceleration Ability in Team Sport Athletes? Sports. 2020; 8(6):76. https://doi.org/10.3390/sports8060076
Chicago/Turabian StyleHarper, Damian J., Daniel D. Cohen, Christopher Carling, and John Kiely. 2020. "Can Countermovement Jump Neuromuscular Performance Qualities Differentiate Maximal Horizontal Deceleration Ability in Team Sport Athletes?" Sports 8, no. 6: 76. https://doi.org/10.3390/sports8060076
APA StyleHarper, D. J., Cohen, D. D., Carling, C., & Kiely, J. (2020). Can Countermovement Jump Neuromuscular Performance Qualities Differentiate Maximal Horizontal Deceleration Ability in Team Sport Athletes? Sports, 8(6), 76. https://doi.org/10.3390/sports8060076