Increased Liveliness of Trunk Muscle Responses in Elite Kayakers and Canoeists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem and Study Design
2.2. Subjects
2.3. Procedures
2.3.1. Measurement Techniques
2.3.2. Signal Processing and Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lorenz, D.; Reiman, M.P.; Lehecka, B.; Naylor, A. What Performance Characteristics Determine Elite versus Nonelite Athletes in the Same Sport? Sports Health Multidiscip. Approach 2013, 5, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Lauder, M.; Kemecsey, I. Kayak technique diagnosis and remedies, Part two. Canoe Focus 1999, 18–19. [Google Scholar]
- McGill, S.M. Low Back Disorders: Evidence-Based Prevention and Rehabilitation; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Muñoz, I.C.; Conesa, A.G.; Sánchez-Meca, J. Prevalence of low back pain in children and adolescents: A meta-analysis. BMC Pediatr. 2013, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Cholewicki, J.; Greene, H.S.; Polzhofer, G.K.; Galloway, M.T.; Shah, R.A.; Radebold, A. Neuromuscular Function in Athletes Following Recovery from a Recent Acute Low Back Injury. J. Orthop. Sports Phys. Ther. 2002, 32, 568–575. [Google Scholar] [CrossRef]
- Santos, M.J.; Kanekar, N.; Aruin, A.S. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J. Electromyogr. Kinesiol. 2010, 20, 388–397. [Google Scholar] [CrossRef]
- Aruin, A.; Forrest, W.R.; Latash, M.L. Anticipatory postural adjustments in conditions of postural instability. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1998, 109, 350–359. [Google Scholar] [CrossRef]
- Latash, M.L. Neurophysiological Basis of Movement; Human Kinetics: Champain, IL, USA, 2008. [Google Scholar]
- Hodges, P.W.; Richardson, C.A. Feedforward contraction of transversus abdominis is no influenced by the direction of arm movement. Exp. Brain Res. 1997, 114, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Aruin, A.S.; Shiratori, T. Anticipatory postural adjustments while sitting: The effects of different leg supports. Exp. Brain Res. 2003, 151, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Aruin, A.S.; Kanekar, N.; Lee, Y.-J.; Ganesan, M. Enhancement of anticipatory postural adjustments in older adults as a result of a single session of ball throwing exercise. Exp. Brain Res. 2014, 233, 649–655. [Google Scholar] [CrossRef]
- Tsao, H.; Hodges, P.W. Immediate changes in feedforward postural adjustments following voluntary motor training. Exp. Brain Res. 2007, 181, 537–546. [Google Scholar] [CrossRef]
- Vasseljen, O.; Unsgaard-Tøndel, M.; Westad, C.; Mork, P.J. Effect of Core Stability Exercises on Feed-Forward Activation of Deep Abdominal Muscles in Chronic Low Back Pain. Spine 2012, 37, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Bae, S.H.; Kim, G.D.; Kim, K.Y. The Effects of Sensorimotor Training on Anticipatory Postural Adjustment of the Trunk in Chronic Low Back Pain Patients. J. Phys. Ther. Sci. 2013, 25, 1189–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cresswell, A.; Oddsson, L.; Thorstensson, A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp. Brain Res. 1994, 98, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.; Cholewicki, J.; Milner, T. Muscle reflex classification of low-back pain. J. Electromyogr. Kinesiol. 2005, 15, 53–60. [Google Scholar] [CrossRef]
- Radebold, A.; Cholewicki, J.; Polzhofer, G.K.; Greene, H.S. Impaired Postural Control of the Lumbar Spine Is Associated with Delayed Muscle Response Times in Patients with Chronic Idiopathic Low Back Pain. Spine 2001, 26, 724–730. [Google Scholar] [CrossRef]
- Cholewicki, J.; Silfies, S.; Shah, R.A.; Greene, H.S.; Reeves, N.P.; Alvi, K.; Goldberg, B. Delayed Trunk Muscle Reflex Responses Increase the Risk of Low Back Injuries. Spine 2005, 30, 2614–2620. [Google Scholar] [CrossRef]
- Mueller, J.; Engel, T.; Mueller, S.; Stoll, J.; Baur, H.; Mayer, F. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects. PLoS ONE 2017, 12, e0174034. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, J.A.; Webster, D.D. Dissociated changes of short- and long-latency myotatic responses prior to a brisk voluntary movement in normals, in karate experts, and in Parkinsonian patients. Adv. Neurol. 1983, 39, 541–554. [Google Scholar]
- Kocjan, A.; Šarabon, N. The effect of unicycle riding course on trunk strength and trunk stability functions in children. J. Strength Cond. Res. 2017, 1. [Google Scholar] [CrossRef]
- Magnusson, M.L.; Aleksiev, A.; Wilder, D.G.; Pope, M.H.; Spratt, K.; Lee, S.H.; Goel, V.K.; Weinstein, J.N. European Spine Society? The Acromed Prize for Spinal Research 1995 Unexpected load and asymmetric posture as etiologic factors in low back pain. Eur. Spine J. 1996, 5, 23–35. [Google Scholar] [CrossRef]
- Andersen, L.L.; Andersen, J.L.; Zebis, M.K.; Aagaard, P. Early and late rate of force development: Differential adaptive responses to resistance training? Scand. J. Med. Sci. Sports 2010, 20, e162–e169. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.; Buckthorpe, M.W.; Hannah, R. Human capacity for explosive force production: Neural and contractile determinants. Scand. J. Med. Sci. Sports 2013, 24, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Vila-Chã, C.; Falla, D.; Farina, D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J. Appl. Physiol. 2010, 109, 1455–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voglar, M.; Šarabon, N. Reflex delays of the trunk muscles in response to postural perturbations: A reliability study. J. Biomech. 2014, 47, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, A.; Thompson, K.; French, D.; Hodgson, D.; Spears, I.R. Peak and average rectified EMG measures: Which method of data reduction should be used for assessing core training exercises? J. Electromyogr. Kinesiol. 2011, 21, 102–111. [Google Scholar] [CrossRef]
- Stokes, I.; Henry, S.M.; Single, R.M. Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clin. Biomech. 2003, 18, 9–13. [Google Scholar] [CrossRef]
- Granata, K.P.; Slota, G.; Bennett, B. Paraspinal muscle reflex dynamics. J. Biomech. 2004, 37, 241–247. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch. Phys. Med. Rehabil. 1999, 80, 1005–1012. [Google Scholar] [CrossRef]
- Cho, K.H.; Beom, J.W.; Lee, T.S.; Lim, J.H.; Lee, T.H.; Yuk, J.H. Trunk Muscles Strength as a Risk Factor for Nonspecific Low Back Pain: A Pilot Study. Ann. Rehabil. Med. 2014, 38, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillin, N.A.; Folland, J.P. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 114, 365–374. [Google Scholar] [CrossRef]
- Kjaer, P.; Bendix, T.; Sørensen, J.S.; Korsholm, L.; Leboeuf-Yde, C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 2007, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, M.T.; Essendrop, M.; Skotte, J.H.; Jørgensen, K.; Fallentin, N. Training can modify back muscle response to sudden trunk loading. Eur. Spine J. 2004, 13, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Zuriaga, D.; Adams, M.; Dolan, P. Is Activation of the Back Muscles Impaired by Creep or Muscle Fatigue? Spine 2010, 35, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Muslim, K.; Bazrgari, B.; Hendershot, B.; Toosizadeh, N.; Nussbaum, M.A.; Madigan, M.L. Disturbance and recovery of trunk mechanical and neuromuscular behaviors following repeated static trunk flexion: Influences of duration and duty cycle on creep-induced effects. Appl. Ergon. 2013, 44, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Hendershot, B.; Bazrgari, B.; Muslim, K.; Toosizadeh, N.; Nussbaum, M.A.; Madigan, M.L. Disturbance and recovery of trunk stiffness and reflexive muscle responses following prolonged trunk flexion: Influences of flexion angle and duration. Clin. Biomech. 2011, 26, 250–256. [Google Scholar] [CrossRef]
- Solomonow, M.; Zhou, B.-H.; Harris, M.; Lu, Y.; Baratta, R.V. The Ligamento-Muscular Stabilizing System of the Spine. Spine 1998, 23, 2552–2562. [Google Scholar] [CrossRef]
- Solomonow, M. Ligaments: A source of musculoskeletal disorders. J. Bodyw. Mov. Ther. 2009, 13, 136–154. [Google Scholar] [CrossRef]
- Miller, E.M.; Bazrgari, B.; Nussbaum, M.A.; Madigan, M.L. Effects of exercise-induced low back pain on intrinsic trunk stiffness and paraspinal muscle reflexes. J. Biomech. 2012, 46, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Ervilha, U.F.; Farina, D.; Arendt-Nielsen, L.; Graven-Nielsen, T. Experimental muscle pain changes motor control strategies in dynamic contractions. Exp. Brain Res. 2005, 164, 215–224. [Google Scholar] [CrossRef]
- Hides, J.; Stokes, M.; Saide, M.; Jull, G.A.; Cooper, D.H. Evidence of Lumbar Multifidus Muscle Wasting Ipsilateral to Symptoms in Patients with Acute/Subacute Low Back Pain. Spine 1994, 19, 165–172. [Google Scholar] [CrossRef]
- Radebold, A.; Cholewicki, J.; Panjabi, M.M.; Patel, T.C. Muscle Response Pattern to Sudden Trunk Loading in Healthy Individuals and in Patients with Chronic Low Back Pain. Spine 2000, 25, 947–954. [Google Scholar] [CrossRef] [PubMed]
All | Kayakers/Canoeists | Non-Athletes | T-Test (p) | |
---|---|---|---|---|
N All (male/female) | 32 (24/8) | 16 (12/4) | 16 (12/4) | |
Age (years) | 22.2 ± 4.6 | 21.0 ± 4.0 | 23.3 ± 5.3 | 0.176 |
Body height (cm) | 177.0 ± 9.2 | 174.7 ± 8.9 | 179.3 ± 9.5 | 0.121 |
Body mass (kg) | 73.0 ± 12.1 | 70.6 ± 10.6 | 75.5 ± 13.5 | 0.262 |
Kayakers/Canoeists (M ± SD) | Non-Athletes (M ± SD.) | p-Value (ES) | ||
---|---|---|---|---|
STRENGTH (Nm) | FLEX | 670.1 ± 204.4 | 512.5 ± 197.8 | 0.077 (0.14) |
L_FLEX | 661.0 ± 144.0 | 518.5 ± 197.1 | 0.076 (0.16) | |
EXT | 794.3 ± 158.8 | 688.0 ± 212.4 | 0.416 (0.03) | |
E/F RAT | 1.2 ± 0.2 | 1.3 ± 0.3 | 0.008 * (0.25) | |
PRR_LAT_M (ms) | ESL | 115.4 ± 10.1 | 118.7 ± 9.9 | 0.450 (0.03) |
ESR | 113.8 ± 9.2 | 118.7 ± 9.0 | 0.215 (0.07) | |
MF | 113.9 ± 9.5 | 119.7 ± 9.7 | 0.169 (0.09) | |
OE | 130.9 ± 13.3 | 124.9 ± 14.3 | 0.979 (0.001) | |
PRR_LAT_SD (ms) | ESL | 10.7 ± 2.8 | 14.9 ± 13.6 | 0.963 (0.00) |
ESR | 9.9 ± 3.2 | 13.8 ± 10.4 | 0.172 (0.00) | |
MF | 11.1 ± 3.1 | 15.5 ± 10.1 | 0.167 (0.00) | |
OE | 13.3 ± 7.3 | 19.4 ± 14.3 | 0.560 (0.01) | |
PRR_RER_M (%/s) | ESL | 19.0 ± 6.6 | 5.6 ± 2.1 | <0.001 * (0.72) |
ESR | 15.3 ± 5.9 | 6.0 ± 1.4 | <0.001 * (0.60) | |
MF | 20.9 ± 9.3 | 10.3 ± 4.5 | 0.003 * (0.33) | |
OE | 9.6 ± 6.1 | 3.8 ± 2.6 | <0.001 * (0.59) | |
PRR_RER_SD (%/s) | ESL | 7.3 ± 3.7 | 2.2 ± 1.3 | <0.001 * (0.57) |
ESR | 5.2 ± 2.0 | 2.4 ± 1.4 | <0.001 * (0.41) | |
MF | 5.4 ± 2.7 | 4.2 ± 3.7 | 0.185 (0.08) | |
OE | 3.8 ± 3.1 | 0.8 ± 0.6 | <0.001 * (0.60) | |
APA_LAT_M (ms) | ESL | 3.8 ± 10.0 | −5.5 ± 14.6 | 0.084 (0.13) |
ESR | −0.5 ± 9.5 | −0.3 ± 12.1 | 0.971 (0.00) | |
MF | −2.3 ± 11.7 | 0.0 ± 13.0 | 0.712 (0.01) | |
OE | 35.0 ± 27.3 | 37.5 ± 20.4 | 0.843 (0.00) | |
APA_LAT_SD (ms) | ESL | 16.2 ± 7.2 | 21.4 ± 10.5 | 0.191 (0.08) |
ESR | 13.3 ± 4.1 | 20.1 ± 8.5 | 0.048 * (0.36) | |
MF | 15.9 ± 6.7 | 22.6 ± 9.6 | 0.082 (0.14) | |
OE | 27.2 ± 9.5 | 29.1 ± 10.1 | 0.697 (0.01) | |
APA_RER_M (%/s) | ESL | 92.1 ± 33.3 | 43.0 ± 19.6 | <0.001 * (0.46) |
ESR | 78.0 ± 48.1 | 43.9 ± 22.0 | 0.041 * (0.15) | |
MF | 61.0 ± 31.0 | 48.0 ± 24.2 | 0.272 (0.05) | |
OE | 19.4 ± 9.2 | 9.8 ± 7.5 | 0.017 * (0.26) | |
APA_RER_SD (%/s) | ESL | 38.0 ± 16.4 | 19.2 ± 6.8 | 0.004 * (0.51) |
ESR | 29.5 ± 17.7 | 20.7 ± 8.9 | 0.171 (0.09) | |
MF | 27.8 ± 13.4 | 18.7 ± 9.1 | 0.084 (0.14) | |
OE | 8.6 ± 4.2 | 4.0 ± 3.6 | 0.015 * (0.26) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocjan, A.; Šarabon, N. Increased Liveliness of Trunk Muscle Responses in Elite Kayakers and Canoeists. Sports 2020, 8, 78. https://doi.org/10.3390/sports8060078
Kocjan A, Šarabon N. Increased Liveliness of Trunk Muscle Responses in Elite Kayakers and Canoeists. Sports. 2020; 8(6):78. https://doi.org/10.3390/sports8060078
Chicago/Turabian StyleKocjan, Andrej, and Nejc Šarabon. 2020. "Increased Liveliness of Trunk Muscle Responses in Elite Kayakers and Canoeists" Sports 8, no. 6: 78. https://doi.org/10.3390/sports8060078
APA StyleKocjan, A., & Šarabon, N. (2020). Increased Liveliness of Trunk Muscle Responses in Elite Kayakers and Canoeists. Sports, 8(6), 78. https://doi.org/10.3390/sports8060078