Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality of Studies
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bompa, T.; Haff, G.G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Chicago, IL, USA, 2009. [Google Scholar]
- Zourdos, M.C.; Dolan, C.; Quiles, J.M.; Klemp, A.; Jo, E.; Loenneke, J.P.; Blanco, R.; Whitehurst, M. Efficacy of daily one-repetition maximum training in well-trained powerlifters and weightlifters: A case series. Nutr. Hosp. 2016, 33, 437–443. [Google Scholar]
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sports Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef]
- Sheiko, B. Boris Sheiko: Powerlifting Foundations and Methods; UFA, 2018; ISBN 978-5-906299-05-5. [Google Scholar]
- Swinton, P.A.; Lloyd, R.; Agouris, I.; Stewart, A. Contemporary training practices in elite British powerlifters: Survey results from an international competition. J. Strength Cond. Res. 2009, 23, 380–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zourdos, M.C.; Jo, E.; Khamoui, A.V.; Lee, S.-R.; Park, B.-S.; Ormsbee, M.J.; Panton, L.B.; Contreras, R.J.; Kim, J.-S. Modified Daily Undulating Periodization Model Produces Greater Performance Than a Traditional Configuration in Powerlifters. J. Strength Cond. Res. 2016, 30, 784–791. [Google Scholar] [CrossRef]
- Haff, G.G. Roundtable Discussion: Periodization of Training—Part 1. Strength Cond. J. 2004, 26, 50–69. [Google Scholar] [CrossRef]
- Androulakis-Korakakis, P.; Fisher, J.; Kolokotronis, P.; Gentil, P.; Steele, J.; Androulakis-Korakakis, P.; Fisher, J.P.; Kolokotronis, P.; Gentil, P.; Steele, J. Reduced Volume ‘Daily Max’ Training Compared to Higher Volume Periodized Training in Powerlifters Preparing for Competition—A Pilot Study. Sports 2018, 6, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colquhoun, R.J.; Gai, C.M.; Aguilar, D.; Bove, D.; Dolan, J.; Vargas, A.; Couvillion, K.; Jenkins, N.D.M.; Campbell, B.I. Training Volume, Not Frequency, Indicative of Maximal Strength Adaptations to Resistance Training. J. Strength Cond. Res. 2018, 32, 1207–1213. [Google Scholar] [CrossRef]
- Colquhoun, R.J.; Gai, C.M.; Walters, J.; Brannon, A.R.; Kilpatrick, M.W.; DʼAgostino, D.P.; Campbell, B.I. Comparison of Powerlifting Performance in Trained Men Using Traditional and Flexible Daily Undulating Periodization. J. Strength Cond. Res. 2017, 31, 283–291. [Google Scholar] [CrossRef] [Green Version]
- João, G.A.; Evangelista, A.L.; Gomes, H.; Charro, M.A.; Bocalini, D. Effect of 16 Weeks of Periodized Resistance Training on Strength Gains of Powerlifting Athletes. J. Exerc. Physiol. 2014, 17, 102–109. [Google Scholar]
- Raastad, T.; Kirketeig, A.; Wolf, D.; Paulsen, G. Powerlifters imrpoved strength and muscular adaptations to a greater extent when equal total training volume was divded into 6 compared to 3 training sessions per week. In Proceedings of the 17th Annual Conference of the ECSS, Brugge, Belgium, 4–7 July 2012; pp. 4–7. [Google Scholar]
- Antretter, M.; Färber, S.; Immler, L.; Perktold, M.; Posch, D.; Raschner, C.; Wachholz, F.; Burtscher, M. The Hatfield-system versus the weekly undulating periodised resistance training in trained males. Int. J. Sports Sci. Coach. 2018, 13, 95–103. [Google Scholar] [CrossRef]
- Antretter, M.; Färber, S.; Immler, L.; Perktold, M.; Posch, D.; Raschner, C.; Wachholz, F.; Burtscher, M. The Hatfield-System versus the Weekly Undulating Periodised Resistance Training in trained males: Effects of a third mesocyle. J. Hum. Sport Exerc. 2019, 14. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Scientific bases for precompetition tapering strategies. Med. Sci. Sports Exerc. 2003, 35, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Plisk, S.; Stone, M. Periodization Strategies. Strength Cond. J. 2003, 25, 19–37. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Detraining: Loss of Training-Induced Physiological and Performance Adaptations. Part I. Sports Med. 2000, 30, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I. Tapering and Peaking for Optimal Performance; Illustrated; Human Kinetic: Champaign, IL, USA, 2009; ISBN 0-7360-7484-8. [Google Scholar]
- Thomas, L.; Busso, T. A theoretical study of taper characteristics to optimize performance. Med. Sci. Sports Exerc. 2005, 37, 1615–1621. [Google Scholar] [CrossRef]
- Pritchard, H.J.; Barnes, M.J.; Stewart, R.J.C.; Keogh, J.W.L.; McGuigan, M.R. Short-Term Training Cessation as a Method of Tapering to Improve Maximal Strength. J. Strength Cond. Res. 2018, 32, 458. [Google Scholar] [CrossRef] [Green Version]
- Bosquet, L.; Berryman, N.; Dupuy, O.; Mekary, S.; Arvisais, D.; Bherer, L.; Mujika, I. Effect of training cessation on muscular performance: A meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, e140–e149. [Google Scholar] [CrossRef]
- Bosquet, L.; Montpetit, J.; Arvisais, D.; Mujika, I. Effects of tapering on performance: A meta-analysis. Med. Sci. Sports Exerc. 2007, 39, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Chatard, J.C.; Geyssant, A. Effects of training and taper on blood leucocyte populations in competitive swimmers: Relationships with cortisol and performance. Int. J. Sports Med. 1996, 17, 213–217. [Google Scholar] [CrossRef]
- Myers, V.R.; McKillop, A.L.; Fraser, S.J.; Abel, J.M.; Wells, G.D. Physiological and psychological adaptations during taper in competitive swimmers. Int. J. Sports Sci. Coach. 2017, 12, 481–494. [Google Scholar] [CrossRef]
- Neary, J.P.; Martin, T.P.; Quinney, H.A. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med. Sci. Sports Exerc. 2003, 35, 1875–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houmard, J.A.; Scott, B.K.; Justice, C.L.; Chenier, T.C. The effects of taper on performance in distance runners. Med. Sci. Sports Exerc. 1994, 26, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Goya, A.; Padilla, S.; Grijalba, A.; Gorostiaga, E.; Ibañez, J. Physiological Responses to a 6-d Taper in Middle-Distance Runners: Influence of Training Intensity and Volume. Med. Sci. Sports Exerc. 2000, 32, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Wilson, G.J. A Practical Approach to the Taper. Strength Cond. J. 2008, 30, 10–17. [Google Scholar] [CrossRef]
- Brännström, A.; Rova, A.; Yu, J.-G. Effects and Mechanisms of Tapering in Maximizing Muscular Power. Int. J. Hum. Mov. Sports Sci. 2013, 1, 18–23. [Google Scholar] [CrossRef]
- Trinity, J.D.; Pahnke, M.D.; Reese, E.C.; Coyle, E.F. Maximal mechanical power during a taper in elite swimmers. Med. Sci. Sports Exerc. 2006, 38, 1643–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinity, J.D.; Pahnke, M.D.; Sterkel, J.A.; Coyle, E.F. Maximal power and performance during a swim taper. Int. J. Sports Med. 2008, 29, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujika, I.; Halson, S.; Burke, L.M.; Balagué, G.; Farrow, D. An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef]
- Vachon, A.; Berryman, N.; Mujika, I.; Paquet, J.-B.; Arvisais, D.; Bosquet, L. Effects of tapering on neuromuscular and metabolic fitness in team sports: A systematic review and meta-analysis. Eur. J. Sport Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Pritchard, H.; Keogh, J.; Barnes, M.; McGuigan, M. Effects and Mechanisms of Tapering in Maximizing Muscular Strength. Strength Cond. J. 2015, 37, 72–83. [Google Scholar] [CrossRef]
- Pritchard, H.J.; Tod, D.A.; Barnes, M.J.; Keogh, J.W.; McGuigan, M.R. Tapering Practices of New Zealand’s Elite Raw Powerlifters. J. Strength Cond. Res. 2016, 30, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Mikulic, P. Tapering Practices of Croatian Open-Class Powerlifting Champions. J. Strength Cond. Res. 2017, 31, 2371. [Google Scholar] [CrossRef]
- Winwood, P.W.; Dudson, M.K.; Wilson, D.; Mclaren-Harrison, J.K.H.; Redjkins, V.; Pritchard, H.J.; Keogh, J.W.L. Tapering Practices of Strongman Athletes. J. Strength Cond. Res. 2018, 32, 1181–1196. [Google Scholar] [CrossRef]
- Smart, N.A.; Waldron, M.; Ismail, H.; Giallauria, F.; Vigorito, C.; Cornelissen, V.; Dieberg, G. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 2015, 13, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Farah, B.Q.; Germano-Soares, A.H.; Rodrigues, S.L.C.; Santos, C.X.; Barbosa, S.S.; Vianna, L.C.; Cornelissen, V.A.; Ritti-Dias, R.M. Acute and Chronic Effects of Isometric Handgrip Exercise on Cardiovascular Variables in Hypertensive Patients: A Systematic Review. Sports 2017, 5, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godawa, T.M.; Credeur, D.P.; Welsch, M.A. Influence of Compressive Gear on Powerlifting Performance: Role of Blood Flow Restriction Training. J. Strength Cond. Res. 2012, 26, 1274. [Google Scholar] [CrossRef] [PubMed]
- Hartman, M.; Pendlay, G.; Kilgore, J.L. Evaluation of The Hormonal Control Model of Competition Training in National-level Weightlifters. Med. Sci. Sports Exerc. 2004, 36, S352. [Google Scholar] [CrossRef]
- Williams, T.D. Monitoring Changes in Resistance Training Performance Following Overload and Taper Microcycles. Ph.D. Thesis, University of Alabama Libraries, Tuscaloosa, AL, USA, 2017. [Google Scholar]
- Kyriazis, T.A.; Terzis, G.; Boudolos, K.; Georgiadis, G. Muscular Power, Neuromuscular Activation, and Performance in Shot Put Athletes at Preseason and at Competition Period. J. Strength Cond. Res. 2009, 23, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaras, N.D.; Stasinaki, A.E.; Krase, A.A.; Methenitis, S.K.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Effects of Tapering with Light vs. Heavy Loads on Track and Field Throwing Performance. J. Strength Cond. Res. 2014, 28, 3484. [Google Scholar] [CrossRef] [PubMed]
- Shepley, B.; MacDougall, J.D.; Cipriano, N.; Sutton, J.R.; Tarnopolsky, M.A.; Coates, G. Physiological effects of tapering in highly trained athletes. J. Appl. Physiol. Bethesda Md 1985 1992, 72, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Bazyler, C.D.; Mizuguchi, S.; Zourdos, M.C.; Sato, K.; Kavanaugh, A.A.; DeWeese, B.H.; Breuel, K.F.; Stone, M.H. Characteristics of a National Level Female Weightlifter Peaking for Competition: A Case Study. J. Strength Cond. Res. 2018, 32, 3029–3038. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.J.; Barnes, M.J.; Stewart, R.J.; Keogh, J.W.; McGuigan, M.R. Higher- versus Lower-Intensity Strength-Training Taper: Effects on Neuromuscular Performance. Int. J. Sports Physiol. Perform. 2019, 14, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistilli, E.E.; Kaminsky, D.E.; Totten, L.M.; Miller, D.R. Incorporating One Week of Planned Overreaching into the Training Program of Weightlifters. Strength Cond. J. 2008, 30, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Travis, S.K.; Mizuguchi, S.; Stone, M.H.; Sands, W.A.; Bazyler, C.D. Preparing for a National Weightlifting Championship: A Case Series. J. Strength Cond. Res. 2020, 34, 1842–1850. [Google Scholar] [CrossRef]
- Harber, M.P.; Gallagher, P.M.; Creer, A.R.; Minchev, K.M.; Trappe, S.W. Single muscle fiber contractile properties during a competitive season in male runners. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R1124–R1131. [Google Scholar] [CrossRef] [Green Version]
- Andre, M.J.; Mosiman, M.E.; Askow, A.T.M.; Allen, J.J.; Gillen, L.A.; Morrisette, E.M.; Jagim, A.R.; Gillette, C.M. Monitoring Collegiate Powerlifters Across a Competition Taper. In Proceedings of the National Strength and Conditioning Association, New Orleans, LA, USA, 22 June 2016. [Google Scholar]
- Askow, A.T.M.; Mosiman, M.E.; Allen, J.J.; Morrisette, E.M.; Gillen, L.A.; Gillette, C.M.; Jagim, A.R.; Andre, M.J. Daily Monitoring of Collegiate Powerlifters Across the Final Week of a Competition Taper. In Proceedings of the National Strength and Conditioning Association, New Orleans, LA, USA, 22 June 2016. [Google Scholar]
- Häkkinen, K.; Kallinen, M.; Komi, P.V.; Kauhanen, H. Neuromuscular adaptations during short-term “normal” and reduced training periods in strength athletes. Electromyogr. Clin. Neurophysiol. 1991, 31, 35–42. [Google Scholar]
- Seppänen, S. Effects of two different tapering models on maximal strength gains in recreationally strength trained men. Master’s Thesis, University of Jyväskylä, JYX Digital Repository, Jyväskylä, Finland, 2018. [Google Scholar]
- González-Badillo, J.J.; Izquierdo, M.; Gorostiaga, E.M. Moderate Volume of High Relative Training Intensity Produces Greater Strength Gains Compared with Low and High Volumes in Competitive Weightlifters. J. Strength Cond. Res. Champaign 2006, 20, 73–81. [Google Scholar]
- Costill, D.L.; Flynn, M.G.; Kirwan, J.P.; Houmard, J.A.; Mitchell, J.B.; Thomas, R.; Park, S.H. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med. Sci. Sports Exerc. 1988, 20, 249–254. [Google Scholar] [CrossRef]
- Costill, D.L.; Thomas, R.; Robergs, R.A.; Pascoe, D.; Lambert, C.; Barr, S.; Fink, W.J. Adaptations to swimming training: Influence of training volume. Med. Sci. Sports Exerc. 1991, 23, 371–377. [Google Scholar] [CrossRef]
- Issurin, V. Block periodization versus traditional training theory: A review. J. Sports Med. Phys. Fitness 2008, 48, 65–75. [Google Scholar]
- Hortobágyi, T.; Houmard, J.A.; Stevenson, J.R.; Fraser, D.D.; Johns, R.A.; Israel, R.G. The effects of detraining on power athletes. Med. Sci. Sports Exerc. 1993, 25, 929–935. [Google Scholar] [PubMed]
- Terzis, G.; Stratakos, G.; Manta, P.; Georgiadis, G. Throwing performance after resistance training and detraining. J. Strength Cond. Res. 2008, 22, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; MacDougall, J.D.; Sale, D.G. The effects of tapering on strength performance in trained athletes. Int. J. Sports Med. 1994, 15, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Ibáñez, J.; Häkkinen, K.; Kraemer, W.J.; Ruesta, M.; Gorostiaga, E.M. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J. Sports Sci. 2004, 22, 465–478. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Muscular characteristics of detraining in humans. Med. Sci. Sports Exerc. 2001, 33, 1297–1303. [Google Scholar] [CrossRef]
- Weiss, L.W.; Wood, L.E.; Fry, A.C.; Kreider, R.B.; Relyea, G.E.; Bullen, D.B.; Grindstaff, P.D. Strength-Power Augmentation Subsequent to Short-Term Training Abstinence. J. Strength Cond. Res. 2004, 18, 765–770. [Google Scholar]
- Anderson, T.; Cattanach, D. Effects of three different rest periods on expression of developed strength. J. Strength Cond. Res. 1993, 7, 185. [Google Scholar]
- Belcher, D.J.; Sousa, C.A.; Carzoli, J.P.; Johnson, T.K.; Helms, E.; Visavadiya, N.P.; Zoeller, R.F.F.; Whitehurst, M.; Zourdos, M.C. Time Course of Recovery is Similar for the Back Squat, Bench Press, and Deadlift in Well-Trained Males. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2019, 44, 1033–1042. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.J.; Miller, A.; Reeve, D.; Stewart, R.J. Acute neuromuscular and endocrine responses to two different compound exercises: Squat versus deadlift. J. Strength Cond. Res. 2017, 33, 2381–2387. [Google Scholar] [CrossRef]
- Curry, L.A.; Wagman, D.F. Qualitative description of the prevalence and use of anabolic androgenic steroids by United States powerlifters. Percept. Mot. Skills 1999, 88, 224–233. [Google Scholar] [CrossRef]
- Eriksson, A.; Kadi, F.; Malm, C.; Thornell, L.-E. Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem. Cell Biol. 2005, 124, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Fair, J.D. Olympic weightlifting and the introduction of steroids: A statistical analysis of world championship results, 1948–72. Int. J. Hist. Sport 1988, 5, 96–114. [Google Scholar] [CrossRef]
- Kadi, F.; Eriksson, A.; Holmner, S.; Thornell, L.E. Effects of anabolic steroids on the muscle cells of strength-trained athletes. Med. Sci. Sports Exerc. 1999, 31, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Competition Level/Status | Athlete Type/Sample Size | Sex/Sample Size | Age (years) | Body Mass (kg) | Height (cm) | Quality Score (%) * |
---|---|---|---|---|---|---|---|
Häkkinen et al. 1991 | NAT/NC | PL (n = 10) | M (n = 10) | 29.2 ± 5.8 | 75.0 ± 15.0 | - | 6 (86%) |
Anderson and Cattanach 1993 | D1 | TF (n = 41) | M (n = 22); F (n = 19) | - | - | - | 5 (71%) |
Hartman et al. 2004 | NAT | WL (n = 7) | M (n = 7) | 19.7 ± 1.6 | 94.0 ± 21.1 | - | 3 (43%) |
Weiss et al. 2004 | NC | ST (n = 25) | M (n = 25) | 24.2 ± 3.8 | 89.0 ± 0.9 | - | 6 (86%) |
Hortobáygi et al. 2008 | C/D1 | PL (n = 4); AFB (n = 8) | M (n = 12) | 24.4 ± 0.7 | 88.6 ± 3.6 | 181.1 ± 10.1 | 7 (100%) |
Kyriazis et al. 2009 | NAT | TH (n = 9) | M (n = 9) | 26.0 ± 4.0 | 113.3 ± 9.0 † | 188.4 ± 6.0 | 3 (43%) |
Godawa et al. 2012 | C | PL (n = 10) | M (n = 8); F (n = 2) | 21.5 ± 3.5 | 80.7 ± 38.5 | 175.3 ± 25.1 | 6 (86%) |
EQ-PL (n = 8) | M (n = 6); F (n = 2) | 22.0 ± 5.7 | 94.1 ± 44.6 | 176.6 ± 16.2 | |||
Andre, Askow et al. 2016 | C/Jr. | PL (n = 5) | M (n = 5) | 21.0 ± 4.2 | 111.3 ± 32.8 | 179.0 ± 6.0 | 5 (71%) |
Gonzàlez-Badillo et al. 2016 | NAT/Jr. | WL (n = 12; LIG) | M (n = 29) | 17.1 ± 1.7 | 73.7 ± 5.5 | 168.0 ± 4.1 | 4 (57%) |
WL (n = 9; MIG) | 16.9 ± 1.7 | 74.0 ± 3.9 | 167.0 ± 4.0 | ||||
WL (n = 8; HIG) | 17.5 ± 1.9 | 72.0 ± 2.3 | 169.1 ± 3.6 | ||||
Pritchard et al. 2016 | INT | PL (n = 11) | M (n = 8); F (n = 3) | 28.4 ± 7.0 | 91.0 ± 27.4 | - | 3 (43%) |
Grgic and Mikulic 2017 | NAT | PL (n = 10) | M (n = 6); | 29.8 ± 3.8 | 86.3 ± 16.8 | - | 3 (43%) |
F (n = 4) | 28.3 ± 2.2 | 64.2 ± 9.4 | - | ||||
Williams 2017 | CL | PL (n = 15) | M (n = 12); F (n = 3) | 25.0 ± 6.0 | 93.0 ± 17.6 | 175.8 ± 7.9 | 7 (100%) |
Pritchard et al. 2018 | NC | ST (n = 11) | M (n = 11) | 21.3 ± 3.3 | 92.3 ± 17.6 | 182.0 ± 8.0 | 7 (100%) |
Pritchard et al. 2018 | NC | ST (n = 8) | M (n = 8) | 23.8 ± 5.4 | 79.6 ± 10.2 | 180.0 ± 6.0 | 7 (100%) |
Seppänen 2018 | NC | ST (n = 7; Group 1) | M (n = 14) | 26.1 ± 2.8 | 84.2 ± 11.2 | 183.1 ± 5.5 | 7 (100%) |
ST (n = 7; Group 2) | 25.6 ± 2.6 | 81.7 ± 9.4 | 180.0 ± 3.5 | ||||
Winwood et al. 2018 | CL/NAT/INT | SM | M (n = 353); F (n = 101) | 33.2 ± 8.0 | 108.6 ± 27.9 | 178.1 ± 10.6 | 4 (57%) |
Author and Year | Athlete | Sample Size | Taper Model | Duration | Intensity | Volume | BS-1RM | BP-1RM | IBP-PFa |
---|---|---|---|---|---|---|---|---|---|
Williams 2017 | PL | n = 15 | Step | 7 days | ↑↓ | ↓ 67.0% †/↓ 31.6% | - | ↑ 6.4%; 8.1 kg (p < 0.05) †/ ↑ 3.7%; 4.8 kg (p <0.05) | - |
Pritchard et al. 2018 | ST | n = 11 | Step | 7 days | ↑ 5.9% | ↓ 71.9% | - | - | ↑↓ |
ST | n = 11 | Step | 7 days | ↓ 8.5% | ↓ 70.0% | ↑ 2.7%; 0.5 N | |||
Kyrazis et al. 2009 | TH | n = 9 | Step | 14 days | ↓ | ↓ | ↑ 6.5%; 14.0 kg (p < 0.025) | - | - |
Seppänen 2018 | ST | n = 7 | Step | 14 days | ↑↓ | ↓ 54.0% | ↑ 3.4%; 4.3 kg (p = 0.003) | ↑ 2.0%; 2.0 kg (p = 0.099) | - |
ST | n = 7 | Exponential | 14 days | ↑↓ | ↓ 54.0% | ↑ 1.7%; 2.0 kg (p = 0.04) | ↑ 1.4%; 1.3 kg (p = 0.076) | ||
Godawa et al. 2012 | PL | n = 10 | Exponential | 14 days | ↓ 25% | ↑ | ↑ 2.3%; 3.6 kg | ↑ 2.1%; 2.3 kg | - |
EQ-PL | n = 8 | Exponential | 14 days | ↓ 25% | ↑ | ↑ 5.9%; 14.5 kg | ↑ 1.8%; 2.7 kg | ||
González-Badillo et al. 2016 | WL | n = 12 | Exponential | 14 days | ↓ | ↓ 50% | ↑5.3%; 8.2 kg (p < 0.01) | - | - |
WL | n = 9 | Exponential | 14 days | ↓ | ↓ 50% | ↑ 9.5%; 14.8 kg (p < 0.05) | |||
WL | n = 8 | Exponential | 14 days | ↓ | ↓ 50% | ↑ 6.9; 11.1 kg (p < 0.05) | |||
Hartman et al. 2004 | WL | n = 7 | Exponential | 28 days | ↓ 15.0% | ↓ 37.0% | ↑ 3.9%; 7.2 kg | - | - |
Author and Year | Athlete | Sample Size | Cessation Duration | BS-1RM | BP-1RM | IBP-PF | IBP-PFa | IBP-RFD |
---|---|---|---|---|---|---|---|---|
Seppänen 2018 | ST | n = 7 | 2 days | ↑ 3.4%; 4.3 kg (p = 0.003) | ↑2.0%; 2.0 kg (p = 0.099) | - | - | - |
ST | n = 7 | 2 days | ↑ 1.7%; 2.0 kg (p = 0.04) | ↑ 1.4%; 1.3 kg (p = 0.076) | ||||
Pritchard et al. 2018 | ST | n = 8 | 3.5 days | - | - | - | ↑ 1.5%; 0.3 N | ↓ 8.0%; 683.3 N·s−1 |
ST | n = 8 | 5.5 days | ↑ 1.0%; 0.2 N | ↑ 9.5%; 822.3 N·s−1 | ||||
Andre, Askow et al. 2016 | PL | n = 5 | 4 days | ↑ | ↑ | - | - | - |
Weiss et al. 2004 | ST | n = 8 | 2 days | - | ↑ (ES = 0.15) | ↑ (ES = 0.12)/ ↓ ES = −0.13 | ↑ (ES = 0.27)/ ↓ ES = −0.11 | - |
ST | n = 5 | 3 days | ↑ (ES = 0.08) | ↓ ES = −0.11/ ↓ ES = −0.06 | ↑ (ES = 0.10)/ ↓ ES = −0.03 | |||
ST | n = 5 | 4 days | ↑ (ES = 0.03) | ↑ (ES = 0.26)/ ↑ ES = 0.02 | ↑ (ES = 0.30)/ ↑ (ES = 0.03) | |||
ST | n = 7 | 5 days | ↑ (ES = 0.07) | ↑ (ES = 0.07)/ ↑ (ES = 0.00) | ↑ (ES = 0.05)/ ↓ ES = −0.03 | |||
Anderson and Cattanach, 1993 | TF | n = 41 | 2, 4, or 7 days | ↑ 4.9%; 5.5 kg | ↑ 4.9%; 5.5 kg | - | - | - |
Hortobáygi et al. 2008 | PL/AFB | n = 4/n = 8 | 14 days | ↓ 0.9%; 1.7 kg (p < 0.05) | ↓ 1.7%; 2.3 kg (p < 0.05) | - | - | - |
Author and Year | Athlete | Sample Size | Cessation Duration |
---|---|---|---|
Grgic and Mikulic 2017 | PL | n = 10 | 2–4 days |
Pritchard et al. 2016 | PL | n = 11 | 2–5 days |
Winwood et al. 2018 | SM | n = 250 | 2–6 days |
SM | n = 161 | 3–10 days (for back squat only) | |
SM | n = 91 | 4–8 days (for bench press only) † | |
SM | n = 171 | 5–11 days (for deadlift only) |
Author and Year | Athlete | Sample Size | Taper Model | Duration | Intensity | Volume | BS-1RM | BP-1RM | DL-1RM | PT | Wilks Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Häkkinen et al. 1991 | PL/NC-PL | n = 5/n = 5 | Step | 7 days | ↓↑ | ↓50.0% | ↑ | - | - | - | - |
Williams 2017 | PL | n = 15 | Step | 7 days | ↑↓ | ↓ 67.0% † ↓ 31.6% | - | ↑ 6.4%; 8.1 kg (p < 0.05) †/ ↑ 3.7%; 4.8 kg (p < 0.05) | - | - | - |
Godawa et al. 2012 | PL | n = 10 | Exponential | 14 days | ↓ 25% | ↑ | ↑ 2.3%; 3.6 kg | ↑ 2.1%; 2.3 kg | ↑ 4.8%; 8.6 kg | ↑ 3.2%; 14.1 kg | ↑ 4.9%; 16.0 au |
EQ-PL | n = 8 | Exponential | 14 days | ↓ 25% | ↑ | ↑ 5.9%; 14.5 kg | ↑ 1.8%; 2.7 kg | ↑ 3.8%; 9.1 kg | ↑ 4.4%; 27.7 kg | ↑ 2.8%; 11.0 au | |
* Pritchard et al. 2016 | PL | n = 11 | Exponential | 17 days | ↓ 5.0% | ↓ 58.9% | - | - | - | - | - |
* Grgic and Mikulic 2017 | PL | n = 10 | Exponential Step | 18 days | ↓↑/↑ 5.0% | ↓ 50.5% | - | - | - | - | - |
Andre, Askow et al. 2017 | PL | n = 5 | Linear | 28 days | ↑ 10.0%/↓ 4% | ↓ 58.7% | ↑ | ↑ | ↑ | ↑ | ↑ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travis, S.K.; Mujika, I.; Gentles, J.A.; Stone, M.H.; Bazyler, C.D. Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review. Sports 2020, 8, 125. https://doi.org/10.3390/sports8090125
Travis SK, Mujika I, Gentles JA, Stone MH, Bazyler CD. Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review. Sports. 2020; 8(9):125. https://doi.org/10.3390/sports8090125
Chicago/Turabian StyleTravis, S. Kyle, Iñigo Mujika, Jeremy A. Gentles, Michael H. Stone, and Caleb D. Bazyler. 2020. "Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review" Sports 8, no. 9: 125. https://doi.org/10.3390/sports8090125
APA StyleTravis, S. K., Mujika, I., Gentles, J. A., Stone, M. H., & Bazyler, C. D. (2020). Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review. Sports, 8(9), 125. https://doi.org/10.3390/sports8090125