Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Information
2.2. Equipment
2.3. Physiological Testing
2.4. Bicycle Testing
2.5. Run Testing
2.6. Simulated Race Tests
2.7. Race Data
2.8. Data and Statistical Analyses
3. Results
3.1. Physiological and Training Data
3.2. Race Data Analysis
3.3. Field Testing Data Analysis
4. Discussion
Applications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millet, G.P.; Dreano, P.; Bentley, D.J. Physiological characteristics of elite short- and long-distance triathletes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2003, 88, 427–430. [Google Scholar] [CrossRef] [PubMed]
- XTerra Triathlon. Wikipedia. Published 1 April 2009. Available online: https://en.wikipedia.org/wiki/XTERRA_Triathlon (accessed on 25 September 2021).
- Impellizzeri, F.; Marcora, S. The Physiology of Mountain Biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.J.; Koves, T.; Benedetto, J.J. The influence of speed, grade and mass during simulated off road bicycling. Appl. Ergon. 2000, 31, 531–536. [Google Scholar] [CrossRef]
- Anderson, L.S.; Rebholz, C.M.; White, L.F.; Mitchell, P.; Curcio, E.P.; Feldman, J.A.; Kahn, J.H. The Impact of Footwear and Packweight on Injury and Illness Among Long-Distance Hikers. Wilderness Environ. Med. 2009, 20, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Wegelin, J.A. The Western States 100-Mile Endurance Run. Med. Sci. Sports Exerc. 2009, 41, 2191–2198. [Google Scholar] [CrossRef] [Green Version]
- Lepers, R.; Stapley, P.J. Age-related changes in conventional road versus off-road triathlon performance. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 111, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Easthope, C.S.; Hausswirth, C.; Louis, J.; Lepers, R.; Vercruyssen, F.; Brisswalter, J. Effects of a trail running competition on muscular performance and efficiency in well-trained young and master athletes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 110, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Lepers, R.; Stapley, P.J. Differences in gender and performance in off-road triathlon. J. Sports Sci. 2010, 28, 1555–1562. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Allen, H.; Coggan, A. Training and Racing with a Power Meter, 2nd ed.; VeloPress: Boulder, CO, USA, 2010. [Google Scholar]
- Laursen, P.; Buchheit, M. (Eds.) Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Seiler, K.S.; Kjerland, G.O. Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef]
- ORDINARY LEAST SQUARE. Data Analysis and Statistics with STATA-UBC. Available online: https://blogs.ubc.ca/datawithstata/home-page/regression/ordinary-least-square-2/ (accessed on 25 September 2021).
- Tucker, R. The anticipatory regulation of performance: The physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br. J. Sports Med. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Laursen, P.B. Describing and Understanding Pacing Strategies during Athletic Competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med. 2009, 43, e1. [Google Scholar] [CrossRef] [PubMed]
- Björklund, G.; Swarén, M.; Born, D.-P.; Stöggl, T. Biomechanical Adaptations and Performance Indicators in Short Trail Running. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Bernard, T.; Vercruyssen, F.; Mazure, C.; Gorce, P.; Hausswirth, C.; Brisswalter, J. Constant versus variable-intensity during cycling: Effects on subsequent running performance. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 99, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suriano, R.; Vercruyssen, F.; Bishop, D.; Brisswalter, J. Variable power output during cycling improves subsequent treadmill run time to exhaustion. J. Sci. Med. Sport 2007, 10, 244–251. [Google Scholar] [CrossRef]
- Hausswirth, C.; Brisswalter, J. Strategies for Improving Performance in Long Duration Events. Sports Med. 2008, 38, 881–891. [Google Scholar] [CrossRef]
- Walsh, J.A. The Rise of Elite Short-Course Triathlon Re-Emphasises the Necessity to Transition Efficiently from Cycling to Running. Sports 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Millet, G.P.; Hofmann, M.D.; Candau, R.B. Alterations in Running Economy and Mechanics After Maximal Cycling in Triathletes: Influence of Performance Level. Int. J. Sports Med. 2000, 21, 127–132. [Google Scholar] [CrossRef]
- Olcina, G.; Perez-Sousa, M.; Escobar-Alvarez, J.A.; Timón, R. Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Hue, O.; Le Gallais, D.; Chollet, D.; Boussana, A.; Préfaut, C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 77, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, J.S.; Palmer, B.M. Acute Effects of Cycling on Running Step Length and Step Frequency. J. Strength Cond. Res. 2000, 14, 97–101. [Google Scholar] [CrossRef]
- Impellizzeri, F.; Sassi, A.; Rodriguez-Alonso, M.; Mognoni, P.; Marcora, S. Exercise intensity during off-road cycling competitions. Med. Sci. Sports Exerc. 2002, 34, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
Field Testing | |||||
---|---|---|---|---|---|
Event Type | CXT | RXT | ROAD | Road | XT |
Temperature (oF) | 77.7 ± 12.1 | 71.5 ± 7.1 | 70.4 ± 4.4 | 60 | 73 |
Humidity (%) | 72.5 ± 19.3 | 71.6 ± 17.9 | 80.0 ± 18.0 | 89 | 83 |
Total Duration (min) | 194.7 ± 21.5 | 127.1 ± 9.2# | 118.9 ± 35.4# | 132.1 | 135.2 |
Total Zone Minutes | |||||
Z1 | 11.6 ± 7.6 | 21.2 ± 18.5 | 16.7 ± 22.1 | 4.0 | 15.5 |
Z2 | 117.1 ± 28.8 | 67.3 ± 12.3 | 63.9 ± 32.2 | 75.0 | 61.4 |
Z3 | 38.6 ± 25.6 | 20.3 ± 20.4# | 35.9 ± 32.9# | 29.9 | 47.5 |
Swim Data | |||||
Time (min) | 24.7 ± 7.8 | 17.7 ± 6.2 | 17.7 ± 4.7 | N/A | N/A |
Stroke Rate (SPM) | 32.0 ± 1.9 | 31.9 ± 2.2 | 31.3 ± 2.3 | ||
Bike Data | |||||
Time (min) | 111.3 ± 16.0 | 64.5 ± 6.3# | 61.8 ±19.3# | 70.0 | 66.9 |
Average KPH | 17.0 ± 2.9 | 20.6 ± 0.7# | 37.7 ± 0.1#$ | 38.7 | 20.2 |
NP (W) | 216.3 ± 6.7 | 231.2 ± 2.4 | 227.0 ± 8.5# | 252.0 | 223.0 |
Cadence (RPM) | 78.3 ± 1.8 | 74.6 ± 8.1 | 94.0 ±4.2#$ | 92.0 | 85.0 |
kJ expediture | 1183.3 ± 167.5 | 736.8 ± 58.5# | 842.8 ± 223.3# | 981.0 | 804.0 |
W’ (kJ) | 184.0 ± 31.7 | 132.4 ± 9.9# | 59.6 ± 22.0#$ | 67.0 | 126.0 |
Peak HR (bpm) | 169.3 ± 4.5 | 169.4 ± 3.0 | 172.0 ± 3.8 | 168.0 | 171.0 |
Average HR (bpm) | 154.5 ± 3.9 | 157.0 ± 3.1 | 161.0 ± 4.5 | 159.0 | 156.0 |
Elevation Gain (m) | 594.1 ± 104.0 | 328.8 ± 102.6# | 145.8 ± 120.3#$ | 221 | 311 |
Adjusted Gain (m·min−1)* | 5.4 ±0.7 | 5.1 ± 1.5 | 2.0 ± 1.6#$ | 0.5 | 0.5 |
Blood Lactate (mM) | -- | -- | -- | 4.2 | 5.9 |
RPE | -- | -- | -- | 8 | 8 |
Run Data | |||||
Run Pace (min·km−1) | 5.25 ± 0.60 | 4.72 ± 0.35 | 4.22 ± 0.31#$ | 4.29 | 4.24 |
Steps·min−1 | 169.7 ± 5.7 | 170.8 ± 4.7 | 174.4 ± 6.2 | 173.8 | 174.2 |
Stride length (m) | 1.19 ± 0.01 | 1.23 ± 0.09 | 1.38 ± 0.03#$ | 1.34 | 1.36 |
Peak HR (bpm) | 179.3 ± 5.8 | 176.5 ± 4.2# | 180.2 ± 1.6 | 182.0 | 184.0 |
Average HR (bpm) | 165.2 ± 4.2 | 166.4 ± 2.0 | 168.8 ± 3.8 | 163.0 | 162.0 |
Elevation Gain (m) | 249.1 ± 108.0 | 125.4 ± 68.6 | 66.9 ± 73.4 | 21.3 | 21.3 |
Adjusted Gain (m·min−1)* | 4.5 ± 1.6 | 3.2 ± 1.7 | 2.0 ± 2.1 | 3.3 | 4.4 |
Blood Lactate (mM) | -- | -- | -- | 5.5 | 6.1 |
RPE | -- | -- | -- | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnish, C.R.; Ferguson, H.A.; Swinand, G.P. Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete. Sports 2021, 9, 136. https://doi.org/10.3390/sports9100136
Harnish CR, Ferguson HA, Swinand GP. Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete. Sports. 2021; 9(10):136. https://doi.org/10.3390/sports9100136
Chicago/Turabian StyleHarnish, Christopher R., Hamish A. Ferguson, and Gregory P. Swinand. 2021. "Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete" Sports 9, no. 10: 136. https://doi.org/10.3390/sports9100136
APA StyleHarnish, C. R., Ferguson, H. A., & Swinand, G. P. (2021). Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete. Sports, 9(10), 136. https://doi.org/10.3390/sports9100136