Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Subjects
2.4. Variables
2.5. Data Sources/Measurement
2.5.1. Anthropometry
2.5.2. MCT1 A1470T (rs1049434) Genotyping
2.5.3. 30 s Wingate All-Out Test (WAnT)
2.5.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Outcome Data
4. Discussion
4.1. Future Directions
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, B.S.; Rogatzki, M.J.; Goodwin, M.L.; Kane, D.A.; Rightmire, Z.; Gladden, L.B. Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 2018, 118, 691–728. [Google Scholar] [CrossRef]
- Brooks, G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020, 35, 101454. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [Green Version]
- Chamari, K.; Padulo, J. ‘Aerobic’ and ‘Anaerobic’ terms used in exercise physiology: A critical terminology reflection. Sports Med.—Open 2015, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Dubouchaud, H.; Butterfield, G.E.; Wolfel, E.E.; Bergman, B.C.; Brooks, G.A. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am. J. Physiol.-Endocrinol. Metab. 2000, 278, E571–E579. [Google Scholar] [CrossRef]
- Hunter, S.K. Performance Fatigability: Mechanisms and Task Specificity. Cold Spring Harb. Perspect. Med. 2018, 8, a029728. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, C.W.; Hunter, S.K.; Trappe, S.W.; Smith, C.S.; Fitts, R.H. Effects of elevated H+ and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: Implications for muscle fatigue in humans. J. Physiol. 2018, 596, 3993–4015. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.K.; Goldstein, J.L.; Pathak, R.K.; Anderson, R.G.W.; Brown, M.S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle. Cell 1994, 76, 865–873. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef] [PubMed]
- Rooney, K.; Trayhurn, P. Lactate and the GPR81 receptor in metabolic regulation: Implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 2011, 106, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Hue, L.; Taegtmeyer, H. The Randle cycle revisited: A new head for an old hat. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, E578–E591. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Bishop, D.J.; Lambert, K.; Mercier, J.; Brooks, G.A. Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: Current status. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 302, R1–R14. [Google Scholar] [CrossRef] [Green Version]
- Juel, C. Current aspects of lactate exchange: Lactate/H+ transport in human skeletal muscle. Eur. J. Appl. Physiol. 2001, 86, 12–16. [Google Scholar] [CrossRef]
- Bonen, A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur. J. Appl. Physiol. 2001, 86, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Halestrap, A.; Mockett, C.; O’Toole, D.; Grant, S.; Ouyang, J. Increases in muscle MCT are associated with reductions in muscle lactate after a single exercise session in humans. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E154–E160. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Edge, J.; Thomas, C.; Mercier, J. High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle. J. Appl. Physiol. 2007, 102, 616–621. [Google Scholar] [CrossRef]
- Fishbein, W.N. Lactate transporter defect: A new disease of muscle. Science 1986, 234, 1254–1256. [Google Scholar] [CrossRef]
- Maciejewski, H.; Bourdin, M.; Féasson, L.; Dubouchaud, H.; Messonnier, L.A. Non-oxidative Energy Supply Correlates with Lactate Transport and Removal in Trained Rowers. Int. J. Sports Med. 2020, 41, 936–943. [Google Scholar] [CrossRef]
- Merezhinskaya, N.; Fishbein, W.N.; Davis, J.I.; Foellmer, J.W. Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport. Muscle Nerve 2000, 23, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Cupeiro, R.; Perez-Prieto, R.; Amigo, T.; Gortazar, P.; Redondo, C.; Gonzalez-Lamuno, D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur. J. Appl. Physiol. 2016, 116, 1005–1010. [Google Scholar] [CrossRef] [Green Version]
- Cupeiro, R.; Benito, P.J.; Maffulli, N.; Calderon, F.J.; Gonzalez-Lamuno, D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J. Sci. Med. Sport 2010, 13, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Rabinovich, M.; Kassem, E.; Meckel, Y. Differences in MCT1 A1470T polymorphism prevalence between runners and swimmers. Scand. J. Med. Sci. Sports 2015, 25, 365–371. [Google Scholar] [CrossRef]
- Fedotovskaya, O.N.; Mustafina, L.J.; Popov, D.V.; Vinogradova, O.L.; Ahmetov, II. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sports Physiol. Perform. 2014, 9, 173–180. [Google Scholar] [CrossRef]
- Sawczuk, M.; Banting, L.K.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Zarebska, A.; Leonska-Duniec, A.; Jastrzebski, Z.; Bishop, D.J.; Eynon, N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport 2015, 18, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-haggar, M.; Eid, A.; Ramadan, W. MCT1 polymorphism among Egyptian children and adolescents as a useful predictor for physical fitness and muscle fatigue. J. Syst. Biol. Proteome Res. 2017, 1, 60–65. [Google Scholar]
- Gonzalez, A.M.; Hoffman, J.R.; Stout, J.R.; Fukuda, D.H.; Willoughby, D.S. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy. Sports Med. 2015, 46, 671–685. [Google Scholar] [CrossRef]
- Kikuchi, N.; Fuku, N.; Matsumoto, R.; Matsumoto, S.; Murakami, H.; Miyachi, M.; Nakazato, K. The Association Between MCT1 T1470A Polymorphism and Power-Oriented Athletic Performance. Int. J. Sports Med. 2016, 38, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Mendez-Villanueva, A.; Ginevičienė, V.; Proia, P.; Drozdovska, S.; Dosenko, V.; Scorcu, M.; Stula, A.; Sawczuk, M.; Cięszczyk, P.; et al. Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status. Int. J. Sports Med. 2018, 39, 1028–1034. [Google Scholar] [CrossRef]
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)—An Extension of the STROBE Statement. PLoS Med. 2009, 6, e1000022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 1000 Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Via, M. ‘Big Data’en genómica: Retos y riesgos éticos. Revista de Bioética y Derecho 2017, 41, 33–45. [Google Scholar] [CrossRef]
- Al-Lami, H.A.A.; Khaleel, S.H.; Yonis, S.D. Study the correlation between alleles of MCT1 gene and enduring performance in handball players. J. Hum. Sport Exerc. 2020, 15, S958. [Google Scholar]
- Bickham, D.C.; Bentley, D.J.; Rossignol, P.F.L.; Cameron-Smith, D. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. Eur. J. Appl. Physiol. 2006, 96, 636–643. [Google Scholar] [CrossRef]
- van der Zwaard, S.; de Ruiter, C.J.; Jaspers, R.T.; de Koning, J.J. Anthropometric Clusters of Competitive Cyclists and Their Sprint and Endurance Performance. Front. Physiol. 2019, 10, 1276. [Google Scholar] [CrossRef]
- van der Zwaard, S.; van der Laarse, W.J.; Weide, G.; Bloemers, F.W.; Hofmijster, M.J.; Levels, K.; Noordhof, D.A.; de Koning, J.J.; de Ruiter, C.J.; Jaspers, R.T. Critical determinants of combined sprint and endurance performance: An integrative analysis from muscle fiber to the human body. FASEB J. 2018, 32, 2110–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.M.; Breitenfeld, L.; Silva, A.J.; Pereira, A.; Izquierdo, M.; Marques, M.C. Genetic inheritance effects on endurance and muscle strength: An update. Sports Med. 2012, 42, 449–458. [Google Scholar] [CrossRef]
- Massidda, M.; Eynon, N.; Bachis, V.; Corrias, L.; Culigioni, C.; Piras, F.; Cugia, P.; Scorcu, M.; Calò, C.M. Influence of the MCT1 rs1049434 on Indirect Muscle Disorders/Injuries in Elite Football Players. Sports Med.—Open 2015, 1, 33. [Google Scholar] [CrossRef]
- Van Rymenant, E.; Abrankó, L.; Tumova, S.; Grootaert, C.; Van Camp, J.; Williamson, G.; Kerimi, A. Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. J. Nutr. Biochem. 2017, 39, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.-D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 2019, 25, 1104–1109. [Google Scholar] [CrossRef]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. In Genetics and Sports; Medicine and Sport Science, Karger: Basel, Switzerland, 2016; pp. 55–67. [Google Scholar]
- Halestrap, A.P. The SLC16 gene family—Structure, role and regulation in health and disease. Mol. Aspects Med. 2013, 34, 337–349. [Google Scholar] [CrossRef]
- Gill, R.K.; Saksena, S.; Alrefai, W.A.; Sarwar, Z.; Goldstein, J.L.; Carroll, R.E.; Ramaswamy, K.; Dudeja, P.K. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am. J. Physiol.-Cell Physiol. 2005, 289, C846–C852. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.H.; Louis, P.; Flint, H.J. Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product. Appl. Environ. Microbiol. 2004, 70, 5810–5817. [Google Scholar] [CrossRef] [Green Version]
- Díaz Ramírez, J.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; Ramírez de la Piscina, X.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 Gene rs558129 Polymorphism Is Associated With Power Performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef]
Triathletes | Control | |||||
---|---|---|---|---|---|---|
n | Frequencies (%) | p-Value | n | Frequencies (%) | p-Value | |
T/T | 33 | 38.8 | >0.05 | 26 | 24.3 | >0.05 |
A/T | 33 | 38.8 | 61 | 57.0 | ||
A/A | 19 | 22.4 | 20 | 18.7 |
Codominant Model | Dominant Model | Recessive Model | ||||||
---|---|---|---|---|---|---|---|---|
T/T | A/T | A/A | p | A/T + A/A | p | A/T + T/T | p | |
(n = 33) | (n = 33) | (n = 19) | (n = 52) | (n = 66) | ||||
Age (years) | 40.3 ± 6.9 | 38.9 ± 8.1 | 37.8 ± 9.6 | 0.374 | 38.5 ± 8.6 | 0.171 | 39.6 ± 7.5 | 0.381 |
Stature (cm) | 177.9 ± 6.6 | 177 ± 5.4 | 174.3 ± 5.1 | 0.099 | 176 ± 5.4 | 0.146 | 177.5 ± 6 | 0.04 * |
BM (kg) | 74.5 ± 8.3 | 73.3 ± 6.5 | 71.1 ± 6.1 | 0.159 | 72.5 ± 6.4 | 0.146 | 73.9 ± 7.4 | 0.079 |
Sum of SF (mm) | 78.5 ± 31 | 75.6 ± 24.4 | 77.2 ± 20.6 | 0.485 | 76.5 ± 22.9 | 0.701 | 77 ± 27.7 | 0.231 |
WAnT PP (W) a | 1036 ± 138.7 | 1021.3 ± 148.7 | 993.5 ± 115.3 | 0.58 | 1011.2 ± 136.9 | 0.318 | 1028.8 ± 142.9 | 0.497 |
WAnT PP/BM (W·kg−1) b | 14.02 ± 2.13 | 13.98 ± 2.03 | 14.04 ± 1.75 | 0.542 | 14 ± 1.91 | 0.267 | 14 ± 2.06 | 0.672 |
WAnT MP (W) a | 708.9 ± 67.1 | 705.5 ± 76.1 | 684.9 ± 63.5 | 0.599 | 698 ± 71.8 | 0.436 | 707.2 ± 71.2 | 0.367 |
WAnT MP/BM (W·kg−1) b | 9.62 ± 1.35 | 9.66 ± 1.1 | 9.69 ± 1.08 | 0.49 | 9.67 ± 1.08 | 0.674 | 9.64 ± 1.23 | 0.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez de la Piscina-Viúdez, X.; Álvarez-Herms, J.; Bonilla, D.A.; Castañeda-Babarro, A.; Larruskain, J.; Díaz-Ramírez, J.; Ahmetov, I.I.; Martínez-Ascensión, A.; Kreider, R.B.; Odriozola-Martínez, A. Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus. Sports 2021, 9, 143. https://doi.org/10.3390/sports9100143
Ramírez de la Piscina-Viúdez X, Álvarez-Herms J, Bonilla DA, Castañeda-Babarro A, Larruskain J, Díaz-Ramírez J, Ahmetov II, Martínez-Ascensión A, Kreider RB, Odriozola-Martínez A. Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus. Sports. 2021; 9(10):143. https://doi.org/10.3390/sports9100143
Chicago/Turabian StyleRamírez de la Piscina-Viúdez, Xavier, Jesús Álvarez-Herms, Diego A. Bonilla, Arkaitz Castañeda-Babarro, Jon Larruskain, Julen Díaz-Ramírez, Ildus I. Ahmetov, Alex Martínez-Ascensión, Richard B. Kreider, and Adrián Odriozola-Martínez. 2021. "Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus" Sports 9, no. 10: 143. https://doi.org/10.3390/sports9100143
APA StyleRamírez de la Piscina-Viúdez, X., Álvarez-Herms, J., Bonilla, D. A., Castañeda-Babarro, A., Larruskain, J., Díaz-Ramírez, J., Ahmetov, I. I., Martínez-Ascensión, A., Kreider, R. B., & Odriozola-Martínez, A. (2021). Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus. Sports, 9(10), 143. https://doi.org/10.3390/sports9100143