The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, J.; Hägglund, M.; Ekstrand, J.; Waldén, M. Hip and groin time-loss injuries decreased slightly but injury burden remained constant in men’s professional football: The 15-year prospective UEFA Elite Club Injury Study. Br. J. Sports Med. 2019, 53, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.; Almousa, S.; Gibb, A.; Allamby, N.; Mullen, R.; Andersen, T.E.; Williams, M. Injury Incidence, Prevalence and Severity in High-Level Male Youth Football: A Systematic Review. Sports Med. 2019, 49, 1879–1899. [Google Scholar] [CrossRef]
- Werner, J.; Hägglund, M.; Waldén, M.; Ekstrand, J. UEFA injury study: A prospective study of hip and groin injuries in professional football over seven consecutive seasons. Br. J. Sports Med. 2009, 43, 1036–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, I.; Glasgow, P.; Langhout, R.; Weir, A.; Kerkhoffs, G.; Agricola, R. Hip Range of Motion Is Lower in Professional Soccer Players With Hip and Groin Symptoms or Previous Injuries, Independent of Cam Deformities. Am. J. Sports Med. 2016, 44, 682–688. [Google Scholar] [CrossRef]
- Verrall, G.M.; Slavotinek, J.P.; Barnes, P.G.; Esterman, A.; Oakeshott, R.D.; Spriggins, A.J. Hip joint range of motion restriction precedes athletic chronic groin injury. J. Sci. Med. Sport 2007, 10, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Murrell, G.A.; Knapman, P. Adductor strain and hip range of movement in male professional soccer players. J. Orthop. Surg. 2007, 15, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Mosler, A.B.; Agricola, R.; Weir, A.; Holmich, P.; Crossley, K.M. Which factors differentiate athletes with hip/groin pain from those without? A systematic review with meta-analysis. Br. J. Sports Med. 2015, 49, 810. [Google Scholar] [CrossRef] [PubMed]
- Tak, I.; Engelaar, L.; Gouttebarge, V.; Barendrecht, M.; Van den Heuvel, S.; Kerkhoffs, G.; Langhout, R.; Stubbe, J.; Weir, A. Is lower hip range of motion a risk factor for groin pain in athletes? A systematic review with clinical applications. Br. J. Sports Med. 2017, 51, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Gradoz, M.C.; Bauer, L.E.; Grindstaff, T.L.; Bagwell, J.J. Reliability of hip rotation range of motion in supine and seated positions. J. Sport Rehabil. 2018, 27. [Google Scholar] [CrossRef]
- Grazette, N.; McAllister, S.; Ong, C.W.; Sunderland, C.; Nevill, M.E.; Morris, J.G. Reliability of a musculoskeletal profiling test battery in elite academy soccer players. PLoS ONE 2020, 15, e0236341. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, E.; Christensen, H.W.; Penny, J.; Overgaard, S.; Vach, W.; Hartvigsen, J. Reproducibility of range of motion and muscle strength measurements in patients with hip osteoarthritis—An inter-rater study. BMC Musculoskelet. Disord. 2012, 13, 242. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, S.; Leunig, M.; Glatthorn, J.F.; Stauffacher, S.; Gerber, H.; Maffiuletti, N.A. Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskelet. Disord. 2010, 11, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, P.C.; Mentiplay, B.F.; Pua, Y.H.; Clark, R.A. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion. J. Sci. Med. Sport 2015, 18, 262–267. [Google Scholar] [CrossRef]
- Krause, D.A.; Hollman, J.H.; Krych, A.J.; Kalisvaart, M.M.; Levy, B.A. Reliability of hip internal rotation range of motion measurement using a digital inclinometer. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2562–2567. [Google Scholar] [CrossRef] [PubMed]
- Valevicius, A.M.; Jun, P.Y.; Hebert, J.S.; Vette, A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Tranquilli, C.; Bernetti, A.; Picerno, P. Ambulatory joint mobility and muscle strength assessment during rehabilitation using a single wearable inertial sensor. Med. Dello Sport 2013, 66, 583–597. [Google Scholar]
- Hejdysz, K.; Goślińska, J.; WarfDczak, A.; DudzjDska, J.; Adamczyk, E.; Sip, P.; Gośliński, J.; Owczarek, P.; Wozniak, A.; LisjDski, P. Manual Therapy Versus Closed Kinematic Exercise“ The Influence on the Range of Movement in Patients with Knee Osteoarthritis: A Pilot Study. Appl. Sci. 2020, 10, 8605. [Google Scholar] [CrossRef]
- Bolam, S.M.; Batinica, B.; Yeung, T.C.; Weaver, S.; Cantamessa, A.; Vanderboor, T.C.; Yeung, S.; Munro, J.T.; Fernandez, J.W.; Besier, T.F.; et al. Remote Patient Monitoring with Wearable Sensors Following Knee Arthroplasty. Sensors 2021, 21, 5143. [Google Scholar] [CrossRef] [PubMed]
- Sacco, G.; Turpin, J.M.; Marteu, A.; Sakarovitch, C.; Teboul, B.; Boscher, L.; Brocker, P.; Robert, P.; Guerin, O. Inertial sensors as measurement tools of elbow range of motion in gerontology. Clin. Interv. Aging 2015, 10, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, P.V.; Small, D.; Muñoz-Esquivel, K.; Condell, J.; Cuesta-Vargas, A.; Williams, J.; Machado, P.M.; Garrido-Castro, J.L. Validity and reliability of a sensor-based electronic spinal mobility index for axial spondyloarthritis. Rheumatology 2020, 59, 3415–3423. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Pérez, C.; Garrido-Castro, J.L.; Torres Vidal, F.; Alcaraz-Clariana, S.; García-Luque, L.; Alburquerque-Sendín, F.; Rodrigues-de-Souza, D.P. Concurrent Validity and Reliability of an Inertial Measurement Unit for the Assessment of Craniocervical Range of Motion in Subjects with Cerebral Palsy. Diagnostics 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luedtke, K.; Schoettker-Königer, T.; Hall, T.; Reimer, C.; Grassold, M.; Hasselhoff-Styhler, P.; Neulinger, C.; Obrocki, M.; Przyhoda, P.; Schäfer, A. Concurrent validity and reliability of measuring range of motion during the cervical flexion rotation test with a novel digital goniometer. BMC Musculoskelet. Disord. 2020, 21, 535. [Google Scholar] [CrossRef]
- Keogh, J.W.L.; Cox, A.; Anderson, S.; Liew, B.; Olsen, A.; Schram, B.; Furness, J. Reliability and validity of clinically accessible smartphone applications to measure joint range of motion: A systematic review. PLoS ONE 2019, 14, e0215806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, P.; Coccetta, C.A.; Rabini, A.; Sciarra, T.; Massazza, G.; Ferriero, G. Mobile smartphone applications for body position measurement in rehabilitation: A review of goniometric tools. Phys. Med. Rehabil. 2014, 6, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Longoni, L.; Brunati, R.; Sale, P.; Casale, R.; Ronconi, G.; Ferriero, G. Smartphone applications validated for joint angle measurement: A systematic review. Int. J. Rehabil. Res. 2019, 42, 11–19. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, M.O.; Sobczak, S.; Fontaine, N.; Saadé, N.; Boivin, K. Quantification and Reliability of Hip Internal Rotation and the FADIR Test in Supine Position Using a Smartphone Application in an Asymptomatic Population. J. Manip. Physiol. Ther. 2020, 43, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Usher-Smith, J.A.; Sharp, S.J.; Griffin, S.J. The spectrum effect in tests for risk prediction, screening, and diagnosis. Br. Med. J. 2016, 353, i3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganokroj, P.; Sompornpanich, N.; Kerdsomnuek, P.; Vanadurongwan, B.; Lertwanich, P. Validity and reliability of smartphone applications for measurement of hip rotation, compared with three-dimensional motion analysis. BMC Musculoskelet. Disord. 2021, 22, 166. [Google Scholar] [CrossRef]
- Hodgson, L.; Hignett, T.; Edwards, K. Normative adductor squeeze tests scores in rugby. Phys. Ther. Sport 2015, 16, 93–97. [Google Scholar] [CrossRef]
- O’Brien, J.; Santner, E.; Finch, C.F. The inter-tester reliability of the squeeze and bent-knee-fall-out tests in elite academy football players. Phys. Ther. Sport 2018, 34, 8–13. [Google Scholar] [CrossRef]
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiro. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Estébanez-de-Miguel, E.; Fortún-Agud, M.; Jimenez-Del-Barrio, S.; Caudevilla-Polo, S.; Bueno-Gracia, E.; Tricás-Moreno, J.M. Comparison of high, medium and low mobilization forces for increasing range of motion in patients with hip osteoarthritis: A randomized controlled trial. Musculoskelet. Sci. Pract. 2018, 36, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Kinsella, S. The effects of caudal mobilisation with movement (MWM) and caudal self-mobilisation with movement (SMWM) in relation to restricted internal rotation in the hip: A randomised control pilot study. Man. Ther. 2016, 22, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Fourchet, F.; Materne, O.; Horobeanu, C.; Hudacek, T.; Buchheit, M. Reliability of a novel procedure to monitor the flexibility of lower limb muscle groups in highly-trained adolescent athletes. Phys. Ther. Sport 2013, 14, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.A.; Walmsley, A.; Page, W. The static accuracy and calibration of inertial measurement units for 3D orientation. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 641–648. [Google Scholar] [CrossRef]
- Mourcou, Q.; Fleury, A.; Franco, C.; Klopcic, F.; Vuillerme, N. Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion. Sensors 2015, 15, 23168–23187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tester 1 | Tester 2 | |||||||
---|---|---|---|---|---|---|---|---|
Left Hip | Right Hip | Left Hip | Right Hip | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
IR | 41.4° | 7.9° | 40.5° | 7.2° | 40.4° | 7.6° | 43.5° | 7.4° |
ER | 58.7° | 8.3° | 58.4° | 8.8° | 60.7° | 7.0° | 60.6° | 7.8° |
TR | 100.0° | 12.9° | 98.9° | 12.6° | 101.1° | 11.0° | 104.0° | 10.6° |
Tester 1 | Tester 2 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left Hip | Right Hip | Left Hip | Right Hip | |||||||||||||
ICC | SEM | MDC | CV | ICC/rs | SEM | MDC | CV | ICC/rₛ | SEM | MDC | CV | ICC/rs | SEM | MDC | CV | |
IR | 0.75 | 3.9° | 10.9° | 6.0% | 0.59 | 4.6° | 12.7° | 6.1% | 0.60 | 4.8° | 13.4° | 7.2% | 0.64 | 4.4° | 12.2° | 6.0% |
ER | 0.59 | 5.4° | 14.8° | 4.6% | 0.54 | 5.9° | 16.4° | 5.5% | 0.51 * | * | * | 5.5% | 0.73 | 4.0° | 11.2° | 3.8% |
TR | 0.71 | 7.0° | 19.3° | 3.7% | 0.47 * | * | * | 4.3% | 0.49 * | * | * | 5.0% | 0.67 * | * | * | 3.4% |
Tester 1 to Tester 2 † | Tester 2 to Tester 1 † | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left Hip | Right Hip | Left Hip | Right Hip | |||||||||||||
ICC/rs | SEM | MDC | CV | ICC/rₛ | SEM | MDC | CV | ICC/rs | SEM | MDC | CV | ICC/rₛ | SEM | MDC | CV | |
IR | 0.57 | 5.2 | 14.4 | 7.2% | 0.33 | 5.9 | 16.5 | 8.5% | 0.64 | 4.6 | 12.8 | 6.7% | 0.54 | 5.0 | 13.7 | 6.9% |
ER | 0.48 | 5.5 | 15.2 | 6.0% | 0.57 | 5.4 | 14.9 | 5.3% | 0.48 * | * | * | 4.6% | 0.75 | 4.2 | 11.7 | 4.1% |
TR | 0.43 * | * | * | 5.1% | 0.41 * | * | * | 5.6% | 0.44 * | * | * | 3.9% | 0.55 * | * | * | 3.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spork, P.; O’Brien, J.; Sepoetro, M.; Plachel, M.; Stöggl, T. The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players. Sports 2021, 9, 148. https://doi.org/10.3390/sports9110148
Spork P, O’Brien J, Sepoetro M, Plachel M, Stöggl T. The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players. Sports. 2021; 9(11):148. https://doi.org/10.3390/sports9110148
Chicago/Turabian StyleSpork, Paul, James O’Brien, Morris Sepoetro, Maximilian Plachel, and Thomas Stöggl. 2021. "The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players" Sports 9, no. 11: 148. https://doi.org/10.3390/sports9110148
APA StyleSpork, P., O’Brien, J., Sepoetro, M., Plachel, M., & Stöggl, T. (2021). The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players. Sports, 9(11), 148. https://doi.org/10.3390/sports9110148