The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review
Abstract
:1. Introduction
2. Influence of Growth and Maturation on Muscle-Tendon Structure and Properties
2.1. Muscle Cross-Sectional Area
2.2. Fascicle Length
2.3. Pennation Angle
2.4. Tendon Architecture and Stiffness
3. Influence of Growth and Maturation on Neural Mechanisms
3.1. Muscle Activation
3.2. Muscle Pre-Activation
3.3. Stretch Reflex Control
3.4. Co-Contraction
4. Effect of Resistance Training on Muscle-Tendon and Neuromuscular Systems
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binzoni, T.; Bianchi, S.; Hanquinet, S.; Kaelin, A.; Sayegh, Y.; Dumont, M.; Jéquier, S. Human gastrocnemius medialis pennation angle as a function of age: From newborn to the elderly. J. Physiol. Anthr. Appl. Hum. Sci. 2001, 20, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Hiort, O. Androgens and puberty. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 31–41. [Google Scholar] [CrossRef]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Myer, G.D.; Lloyd, R.S. The Influence of Biological Maturity on Sprint Speed, Standing Long Jump, and Vaulting Performance in Young Female Gymnasts. Int. J. Sports Physiol. Perform. 2021, 1, 1–8. [Google Scholar]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal sprint speed in boys of increasing maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Papaiakovou, G.; Giannakos, A.; Michailidis, C.; Patikas, D.; Bassa, E.; Kalopisis, V.; Anthrakidis, N.; Kotzamanidis, C. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J. Strength Cond. Res. 2009, 23, 2568–2573. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation leads to gender differences in landing force and vertical jump performance: A longitudinal study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Taylor, M.J.; Cohen, D.; Voss, C.; Sandercock, G.R. Vertical jumping and leg power normative data for English school children aged 10–15 years. J. Sports Sci. 2010, 28, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Amar, M.B.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelly, M.S.; Hermassi, S.; Shephard, R.J. Effects of in-season short-term plyometric training program on sprint and jump performance of young male track athletes. J. Strength Cond. Res. 2015, 29, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Matavulj, D.; Kukolj, M.; Ugarkovic, D.; Tihanyi, J.; Jaric, S. Effects of pylometric training on jumping performance in junior basketball players. J. Sports Med. Phys. Fit. 2001, 41, 159–164. [Google Scholar]
- Lloyd, R.S.; Radnor, J.M.; Croix, M.B.D.S.; Cronin, J.B.; Oliver, J.L. Changes in sprint and jump performances after traditional, plyometric, and combined resistance training in male youth pre-and post-peak height velocity. J. Strength Cond. Res. 2016, 30, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Uzelac-Sciran, T.; Sarabon, N.; Mikulic, P. Effects of 8-Week Jump Training Program on Sprint and Jump Performance and Leg Strength in Pre-and Post-Peak Height Velocity Aged Boys. J. Sports Sci. Med. 2020, 19, 547–555. [Google Scholar] [PubMed]
- Meylan, C.; Malatesta, D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J. Strength Cond. Res. 2009, 23, 2605–2613. [Google Scholar] [CrossRef]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Daly, R.M.; Saxon, L.; Turner, C.H.; Robling, A.G.; Bass, S.L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004, 34, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Dotan, R.; Mitchell, C.J.; Cohen, R.; Gabriel, D.; Klentrou, P.; Falk, B. Explosive sport training and torque kinetics in children. Appl. Physiol. Nutr. Metab. 2013, 38, 740–745. [Google Scholar] [CrossRef]
- Metaxas, T.I.; Mandroukas, A.; Vamvakoudis, E.; Kotoglou, K.; Ekblom, B.; Mandroukas, K. Muscle fiber characteristics, satellite cells and soccer performance in young athletes. J. Sports Sci. Med. 2014, 13, 493. [Google Scholar]
- Mitchell, C.; Cohen, R.; Dotan, R.; Gabriel, D.; Klentrou, P.; Falk, B. Rate of muscle activation in power-and endurance-trained boys. Int. J. Sports Physiol. Perform. 2011, 6, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, J.A.; Blimkie, C.J.; Smith, K.; Garner, S.; Macdougall, J.D.; Sale, D.G. Strength training effects in prepubescent boys. Med. Sci. Sports Exerc. 1990, 22, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Chestnut, J.L.; Docherty, D. The effects of 4 and 10 repetition maximum weight-training protocols on neuromuscular adaptations in untrained men. J. Strength Cond. Res. 1999, 13, 353–359. [Google Scholar]
- Marshall, P.W.; McEwen, M.; Robbins, D.W. Strength and neuromuscular adaptation following one, four, and eight sets of high intensity resistance exercise in trained males. Eur. J. Appl. Physiol. 2011, 111, 3007–3016. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1-Biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Hudelmaier, M.; Wirth, W.; Himmer, M.; Ring-Dimitriou, S.; Sänger, A.; Eckstein, F. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas—Quantitative assessment using MRI. Magn. Reson. Med. 2010, 64, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.J.; Bishop, P.A.; Woods, A.K.; Green, J.M. Cross-sectional area and muscular strength. Sports Med. 2008, 38, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Tonson, A.; Ratel, S.; Le Fur, Y.; Cozzone, P.; Bendahan, D. Effect of maturation on the relationship between muscle size and force production. Med. Sci. Sports Exerc. 2008, 40, 918–925. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosset, J.-F.; Piscione, J.; Lambertz, D.; Pérot, C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur. J. Appl. Physiol. 2009, 105, 131. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Ikegawa, S.; Tsunoda, N.; Fukunaga, T. Strength and cross-sectional areas of reciprocal muscle groups in the upper arm and thigh during adolescence. Int. J. Sports Med. 1995, 16, 54–60. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukanaga, T. Growth changes in the elastic properties of human tendon structures. Int. J. Sports Med. 2001, 22, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Teshima, T.; Hirose, N.; Tsunoda, N. A cross-sectional study of the plantar flexor muscle and tendon during growth. Int. J. Sports Med. 2014, 35, 828–834. [Google Scholar] [CrossRef]
- Morris, J. Oxford Dictionary of Sports Science and Medicine, Michael Kent. Book Rev. 2008, 94, 260–264. [Google Scholar]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. In vivo measurements of muscle specific tension in adults and children. Exp. Physiol. 2010, 95, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.; Myer, G.D.; Lloyd, R.S. Muscle Architecture and Maturation Influences Sprint and Jump Ability in Young Boys: A Multi-Study Approach. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Teshima, T.; Ikebukuro, T.; Hirose, N.; Tsunoda, N. Tendon properties and muscle architecture for knee extensors and plantar flexors in boys and men. Clin. Biomech. 2014, 29, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Lloyd, R.S. The Influence of Maturity Status on Muscle Architecture in School-Aged Boys. Pediatr. Exerc. Sci. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Cunha, G.d.S.; Vaz, M.A.; Herzog, W.; Geremia, J.M.; Leites, G.T.; Reischak-Oliveira, Á. Maturity status effects on torque and muscle architecture of young soccer players. J. Sports Sci. 2020, 38, 1286–1295. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [Green Version]
- Krzysztofik, M.; Wilk, M.; Wojdała, G.; Gołaś, A. Maximizing muscle hypertrophy: A systematic review of advanced resistance training techniques and methods. Int. J. Environ. Res. Public Health 2019, 16, 4897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikai, M.; Fukunaga, T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int. Z. Angew. Physiol. 1970, 28, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Watson, J.S.; Weir, J. Relationships between muscle strength and muscle cross-sectional area in male sprinters and endurance runners. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 309–318. [Google Scholar] [CrossRef]
- Wagle, J.P.; Carroll, K.M.; Cunanan, A.J.; Taber, C.B.; Wetmore, A.; Bingham, G.E.; DeWeese, B.H.; Sato, K.; Stuart, C.A.; Stone, M.H. Comparison of the relationship between lying and standing ultrasonography measures of muscle morphology with isometric and dynamic force production capabilities. Sports 2017, 5, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, J.R.; Piazza, S.J. Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men. J. Appl. Physiol. 2014, 116, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, T.; Miyatani, M.; Tachi, M.; Kouzaki, M.; Kawakami, Y.; Kanehisa, H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol. Scand. 2001, 172, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Mota, J.A.; Hernandez, J.M.; Thompson, B.J. Echo intensity and muscle thickness as predictors Of athleticism and isometric strength in middle-school boys. Muscle Nerve 2017, 55, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Darby, J.; Li, B.; Costen, N.; Loram, I.; Hodson-Tole, E. Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences. Ieee Trans. Biomed. Eng. 2013, 60, 1935–1945. [Google Scholar] [CrossRef] [Green Version]
- Fukutani, A.; Kurihara, T. Comparison of the muscle fascicle length between resistance-trained and untrained individuals: Cross-sectional observation. Springerplus 2015, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Legerlotz, K.; Marzilger, R.; Bohm, S.; Arampatzis, A. Physiological adaptations following resistance training in youth athletes—a narrative review. Pediatr. Exerc. Sci. 2016, 28, 501–520. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. Muscle–tendon structure and dimensions in adults and children. J. Anat. 2010, 216, 631–642. [Google Scholar] [CrossRef]
- Blazevich, A.J. Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med. 2006, 36, 1003–1017. [Google Scholar] [CrossRef]
- Spector, S.A.; Gardiner, P.F.; Zernicke, R.F.; Roy, R.R.; Edgerton, V.R. Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: Implications for motor control. J. Neurophysiol. 1980, 44, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Sacks, R.D.; Roy, R.R. Architecture of the hind limb muscles of cats: Functional significance. J. Morphol. 1982, 173, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Baroni, B.M.; Geremia, J.M.; Rodrigues, R.; De Azevedo Franke, R.; Karamanidis, K.; Vaz, M.A. Muscle architecture adaptations to knee extensor eccentric training: Rectus femoris vs. vastus lateralis. Muscle Nerve 2013, 48, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Guex, K.; Degache, F.; Morisod, C.; Sailly, M.; Millet, G.P. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front. Physiol. 2016, 7, 340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Kumagai, K.; Brechue, W.F. Fascicle length of leg muscles is greater in sprinters than distance runners. Med. Sci. Sports Exerc. 2000, 32, 1125–1129. [Google Scholar] [CrossRef] [Green Version]
- Mont, M.A.; Cohen, D.B.; Campbell, K.R.; Gravare, K.; Mathur, S.K. Isokinetic concentric versus eccentric training of shoulder rotators with functional evaluation of performance enhancement in elite tennis players. Am. J. Sports Med. 1994, 22, 513–517. [Google Scholar] [CrossRef]
- Nasirzade, A.; Ehsanbakhsh, A.; Ilbeygi, S.; Sobhkhiz, A.; Argavani, H.; Aliakbari, M. Relationship between sprint performance of front crawl swimming and muscle fascicle length in young swimmers. J. Sports Sci. Med. 2014, 13, 550. [Google Scholar]
- Gans, C. Fiber architecture and muscle function. Exerc. Sport Sci. Rev. 1982, 10, 160–207. [Google Scholar] [CrossRef]
- Kawakami, Y.; Ichinose, Y.; Kubo, K.; Ito, M.; Imai, M.; Fukunaga, T. Architecture of contracting human muscles and its functional significance. J. Appl. Biomech. 2000, 16, 88–97. [Google Scholar] [CrossRef]
- Wakeling, J.M.; Blake, O.M.; Wong, I.; Rana, M.; Lee, S.S. Movement mechanics as a determinate of muscle structure, recruitment and coordination. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Askew, G.N.; Marsh, R.L. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: Length-force effects and velocity-dependent activation and deactivation. J. Exp. Biol. 1998, 201, 1527–1540. [Google Scholar] [CrossRef]
- Earp, J.E.; Kraemer, W.J.; Cormie, P.; Volek, J.S.; Maresh, C.M.; Joseph, M.; Newton, R.U. Influence of muscle–tendon unit structure on rate of force development during the squat, countermovement, and drop jumps. J. Strength Cond. Res. 2011, 25, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Earp, J.E.; Kraemer, W.J.; Newton, R.U.; Comstock, B.A.; Fragala, M.S.; Dunn-Lewis, C.; Solomon-Hill, G.; Penwell, Z.R.; Powell, M.D.; Volek, J.S. Lower-body muscle structure and its role in jump performance during squat, countermovement, and depth drop jumps. J. Strength Cond. Res. 2010, 24, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Abe, T.; Fukunaga, T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J. Appl. Physiol. 1993, 74, 2740–2744. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Abe, T.; Kuno, S.-Y.; Fukunaga, T. Training-induced changes in muscle architecture and specific tension. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 72, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.; Kaiser, E.; Milz, S. Structure-function relationships in tendons: A review. J. Anat. 2008, 212, 211–228. [Google Scholar] [CrossRef]
- Franchi, M.; Trirè, A.; Quaranta, M.; Orsini, E.; Ottani, V. Collagen structure of tendon relates to function. Sci. World J. 2007, 7, 404–420. [Google Scholar] [CrossRef]
- Witvrouw, E.; Mahieu, N.; Roosen, P.; McNair, P. The role of stretching in tendon injuries. Br. J. Sports Med. 2007, 41, 224–226. [Google Scholar] [CrossRef]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child—adult differences in muscle activation—A review. Pediatr. Exerc. Sci. 2012, 24, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Couppe, C.; Kongsgaard, M.; Aagaard, P.; Hansen, P.; Bojsen-Moller, J.; Kjaer, M.; Magnusson, S.P. Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J. Appl. Physiol. 2008, 105, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.J. The integrated function of muscles and tendons during locomotion. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 1087–1099. [Google Scholar] [CrossRef]
- Hughes, D.; Babbs, C.F.; Geddes, L.; Bourland, J. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrason. Imaging 1979, 1, 356–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, D.; Barnes, G.; Craig, A. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1978, 203, 305–321. [Google Scholar]
- Bailey, A.J.; Paul, R.G.; Knott, L. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 1998, 106, 1–56. [Google Scholar] [CrossRef]
- Kastelic, J.; Palley, I.; Baer, E. A structural mechanical model for tendon crimping. J. Biomech. 1980, 13, 887–893. [Google Scholar] [CrossRef]
- Rogol, A.D.; Clark, P.A.; Roemmich, J.N. Growth and pubertal development in children and adolescents: Effects of diet and physical activity. Am. J. Clin. Nutr. 2000, 72, 521S–528S. [Google Scholar] [CrossRef]
- Kubo, K.; Teshima, T.; Hirose, N.; Tsunoda, N. Growth changes in morphological and mechanical properties of human patellar tendon in vivo. J. Appl. Biomech. 2014, 30, 415–422. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. Mechanical properties of the patellar tendon in adults and children. J. Biomech. 2010, 43, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.; Blazevich, A.; Fath, F.; Korff, T. Age-related changes in mechanical properties of the Achilles tendon. J. Anat. 2012, 220, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Falk, B.; Usselman, C.; Dotan, R.; Brunton, L.; Klentrou, P.; Shaw, J.; Gabriel, D. Child–adult differences in muscle strength and activation pattern during isometric elbow flexion and extension. Appl. Physiol. Nutr. Metab. 2009, 34, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Halin, R.; Germain, P.; Bercier, S.; Kapitaniak, B.; Buttelli, O. Neuromuscular response of young boys versus men during sustained maximal contraction. Med. Sci. Sports Exerc. 2003, 35, 1042–1048. [Google Scholar] [CrossRef]
- Waugh, C.M.; Korff, T.; Blazevich, A.J. Developmental differences in dynamic muscle–tendon behaviour: Implications for movement efficiency. J. Exp. Biol. 2017, 220, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hume, P.; Russell, K. Overuse injuries and injury prevention strategies for youths. Strength Cond. Young Athl. Sci. Appl. Ed. Rs LloydJl Oliver. Lond. 2014, 200–212. [Google Scholar]
- Lambertz, D.; Mora, I.; Grosset, J.-F.; Pérot, C. An evaluation of musculo-tendinous stiffness in prepubertal children and adults, taking into account muscle activity. J. Appl. Physiol. 2003, 95, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seger, J.Y.; Thorstensson, A. Muscle strength and electromyogram in boys and girls followed through puberty. Eur. J. Appl. Physiol. 2000, 81, 54–61. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Influence of age, maturity, and body size on the spatiotemporal determinants of maximal sprint speed in boys. J. Strength Cond. Res. 2017, 31, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Pedley, J.; Lloyd, R.S.; Read, P.; Moore, I.; Myer, G.; Oliver, J. A novel method to categorise stretch-shortening cycle performance across maturity in youth soccer players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Falk, B.; Brunton, L.; Dotan, R.; Usselman, C.; Klentrou, P.; Gabriel, D. Muscle strength and contractile kinetics of isometric elbow flexion in girls and women. Pediatr. Exerc. Sci. 2009, 21, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.; Kamen, G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J. Electromyogr. Kinesiol. 2001, 11, 405–412. [Google Scholar] [CrossRef]
- Allen, G.M.; McKenzie, D.K.; Gandevia, S.C. Twitch interpolation of the elbow flexor muscles at high forces. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1998, 21, 318–328. [Google Scholar] [CrossRef]
- Stokes, M.; Young, A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin. Sci. 1984, 67, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Grosset, J.F.; Mora, I.; Lambertz, D.; Pérot, C. Voluntary activation of the triceps surae in prepubertal children. J. Electromyogr. Kinesiol. 2008, 18, 455–465. [Google Scholar] [CrossRef]
- Koh, T.H.; Eyre, J.A. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch. Dis. Child. 1988, 63, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Henneman, E. Relation between size of neurons and their susceptibility to discharge. Science 1957, 126, 1345–1347. [Google Scholar] [CrossRef]
- Hodson-Tole, E.F.; Wakeling, J.M. Motor unit recruitment for dynamic tasks: Current understanding and future directions. J. Comp. Physiol. B 2009, 179, 57–66. [Google Scholar] [CrossRef]
- Milner-Brown, H.; Stein, R.; Yemm, R. The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. 1973, 230, 359. [Google Scholar] [CrossRef]
- Grimby, L.; Hannerz, J. Recruitment order of motor units on voluntary contraction: Changes induced by proprioceptive afferent activity. J. Neurol. Neurosurg. Psychiatry 1968, 31, 565. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, J.E.; Godaux, E. Ballistic contractions in man: Characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J. Physiol. 1977, 264, 673–693. [Google Scholar] [CrossRef]
- Hannerz, J. Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol. Scand. 1974, 91, 374–384. [Google Scholar] [CrossRef]
- Cohen, R.; Mitchell, C.; Dotan, R.; Gabriel, D.; Klentrou, P.; Falk, B. Do neuromuscular adaptations occur in endurance-trained boys and men? Appl. Physiol. Nutr. Metab. 2010, 35, 471–479. [Google Scholar] [CrossRef]
- Bottinelli, R.; Pellegrino, M.; Canepari, M.; Rossi, R.; Reggiani, C. Specific contributions of various muscle fibre types to human muscle performance: An in vitro study. J. Electromyogr. Kinesiol. 1999, 9, 87–95. [Google Scholar] [CrossRef]
- Harridge, S.; Bottinelli, R.; Canepari, M.; Pellegrino, M.; Reggiani, C.; Esbjörnsson, M.; Saltin, B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflügers Arch. 1996, 432, 913–920. [Google Scholar] [CrossRef]
- Kupa, E.J.; Roy, S.H.; Kandarian, S.C.; De Luca, C.J. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J. Appl. Physiol. 1995, 79, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillegard, W.A.; Brown, E.W.; Wilson, D.J.; Henderson, R.; Lewis, E. Efficacy of strength training in prepubescent to early postpubescent males and females: Effects of gender and maturity. Pediatr. Rehabil. 1997, 1, 147–157. [Google Scholar] [CrossRef]
- Lazaridis, S.; Bassa, E.; Patikas, D.; Giakas, G.; Gollhofer, A.; Kotzamanidis, C. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur. J. Appl. Physiol. 2010, 110, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Age-related differences in the neural regulation of stretch–shortening cycle activities in male youths during maximal and sub-maximal hopping. J. Electromyogr. Kinesiol. 2012, 22, 37–43. [Google Scholar] [CrossRef]
- Frost, G.; Dowling, J.; Dyson, K.; Bar-Or, O. Cocontraction in three age groups of children during treadmill locomotion. J. Electromyogr. Kinesiol. 1997, 7, 179–186. [Google Scholar] [CrossRef]
- Fukutani, A.; Misaki, J.; Isaka, T. Effect of preactivation on torque enhancement by the stretch-shortening cycle in knee extensors. PLoS ONE 2016, 11, e0159058. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Hobara, H.; Kimura, K.; Omuro, K.; Gomi, K.; Muraoka, T.; Iso, S.; Kanosue, K. Determinants of difference in leg stiffness between endurance-and power-trained athletes. J. Biomech. 2008, 41, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.M.; Watt, D.G.D. Observations on the control of stepping and hopping movements in man. J. Physiol. 1971, 219, 709–727. [Google Scholar] [CrossRef] [Green Version]
- Fukutani, A.; Kurihara, T.; Isaka, T. Factors of force potentiation induced by stretch-shortening cycle in plantarflexors. PLoS ONE 2015, 10, e0120579. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.; Smith, P.M. Neural control of leg stiffness during hopping in boys and men. J. Electromyogr. Kinesiol. 2010, 20, 973–979. [Google Scholar] [CrossRef]
- Assaiante, C.; Amblard, B. Visual factors in the child’s gait: Effects on locomotor skills. Percept. Mot. Ski. 1996, 83, 1019–1041. [Google Scholar] [CrossRef]
- Horita, T.; Komi, P.; Nicol, C.; Kyröläinen, H. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: Implications to performance. Eur. J. Appl. Physiol. 2002, 88, 76–84. [Google Scholar]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Hreljac, A. Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 2004, 36, 845–849. [Google Scholar] [CrossRef]
- Nicol, C.; Komi, P.; Marconnet, P. Fatigue effects of marathon running on neuromuscular performance: I. Changes in muscle force and stiffness characteristics. Scand. J. Med. Sci. Sports 1991, 1, 10–17. [Google Scholar] [CrossRef]
- Hoffren, M.; Ishikawa, M.; Komi, P.V. Age-related neuromuscular function during drop jumps. J. Appl. Physiol. 2007, 103, 1276–1283. [Google Scholar] [CrossRef]
- Oliver, J.L.; Croix, M.B.D.S.; Lloyd, R.S.; Williams, C.A. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur. J. Appl. Physiol. 2014, 114, 2241–2249. [Google Scholar] [CrossRef] [Green Version]
- Hobara, H.; Kanosue, K.; Suzuki, S. Changes in muscle activity with increase in leg stiffness during hopping. Neurosci. Lett. 2007, 418, 55–59. [Google Scholar] [CrossRef]
- Grosset, J.-F.; Mora, I.; Lambertz, D.; Pérot, C. Changes in stretch reflexes and muscle stiffness with age in prepubescent children. J. Appl. Physiol. 2007, 102, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Noth, J.; Schmidtbleicher, D. Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. J. Physiol. 1981, 311, 113–125. [Google Scholar] [CrossRef]
- McMahon, J.J.; Comfort, P.; Pearson, S. Lower limb stiffness: Effect on performance and training considerations. Strength Cond. J. 2012, 34, 94–101. [Google Scholar] [CrossRef]
- Henchoz, Y.; Malatesta, D.; Gremion, G.; Belli, A. Effects of the transition time between muscle-tendon stretch and shortening on mechanical efficiency. Eur. J. Appl. Physiol. 2006, 96, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Komi, P.V.; Gollhofer, A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J. Appl. Biomech. 1997, 13, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Milner, T.; Cloutier, C. The effect of antagonist muscle co-contraction on damping of the wrist joint during voluntary movement. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–23 September 1995; pp. 1247–1248. [Google Scholar]
- Frost, G.; Bar-Or, O.; Dowling, J.; Dyson, K. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children. J. Sports Sci. 2002, 20, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Fahey, T.D.; White, T.P. Exercise Physiology: Human Bioenergetics and Its Applications; Mayfield Publishing Company: California City, CA, USA, 1996. [Google Scholar]
- Ovalie, W.K. The human muscle-tendon junction. Anat. Embryol. 1987, 176, 281–294. [Google Scholar] [CrossRef]
- Benjamin, H.J.; Glow, K.M. Strength training for children and adolescents: What can physicians recommend? Physician Sportsmed. 2003, 31, 19–26. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sports Med. 2014, 48, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of periodized and non-periodized resistance training on maximal strength: A meta-analysis. Sports Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J.; Häkkinen, K.; Humphries, B.J.; Murphy, A.J. Kinematics, kinetics, and muscle activation during explosive upper body movements. J. Appl. Biomech. 1996, 12, 31–43. [Google Scholar] [CrossRef]
- Elliott, B.C.; Wilson, G.J.; Kerr, G.K. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 1989, 21, 450–462. [Google Scholar] [CrossRef]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power Part 2 Training Considerations for Improving Maximal Power Production. Sports Med. 2011, 41, 125. [Google Scholar] [CrossRef]
- Desmedt, J.E.; Godaux, E. Fast motor units are not preferentially activated in rapid voluntary contractions in man. Nature 1977, 267, 717–719. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, K.P.; Newton, R.U. Baseball throwing speed and base running speed: The effects of ballistic resistance training. J. Strength Cond. Res. 1998, 12, 216–221. [Google Scholar] [CrossRef]
- Channell, B.T.; Barfield, J. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys. J. Strength Cond. Res. 2008, 22, 1522–1527. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D. Strength training for children and adolescents. Clin. Sports Med. 2000, 19, 593–619. [Google Scholar] [CrossRef]
- Hamill, B. Relative safety of weightlifting and weight training. J. Strength Cond. Res. 1994, 8, 53–57. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L. Strength and Conditioning for Young Athletes: Science and Application; Routledge: London, UK, 2013. [Google Scholar]
- Palmer-Green, D.S.; Stokes, K.A.; Fuller, C.W.; England, M.; Kemp, S.P.; Trewartha, G. Training activities and injuries in English youth academy and schools rugby union. Am. J. Sports Med. 2015, 43, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Behringer, M.; Heede, A.v.; Matthews, M.; Mester, J. Effects of strength training on motor performance skills in children and adolescents: A meta-analysis. Pediatr. Exerc. Sci. 2011, 23, 186–206. [Google Scholar] [CrossRef] [Green Version]
- Behringer, M.; vom Heede, A.; Yue, Z.; Mester, J. Effects of resistance training in children and adolescents: A meta-analysis. Pediatrics 2010, 126, e1199–e1210. [Google Scholar] [CrossRef] [Green Version]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose–response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Lloyd, R.S.; MacDonald, J.; Myer, G.D. Citius, Altius, Fortius: Beneficial effects of resistance training for young athletes: Narrative review. Br. J. Sports Med. 2016, 50, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.; Cote, J.; Abernethy, B. Sport-specific practice and the development of expert decision-making in team ball sports. J. Appl. Sport Psychol. 2003, 15, 12–25. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Myer, G.D. Exercise deficit disorder in youth: Play now or pay later. Curr. Sports Med. Rep. 2012, 11, 196–200. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Myer, G.; Stone, M.; Oliver, J.; Jeffreys, I.; Pierce, K. UKSCA position statement: Youth resistance training. Prof Strength Cond 2012, 26, 26–39. [Google Scholar]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Côté, J.; Emery, C.A.; Faigenbaum, A.; Hall, G.; Kriemler, S.; Léglise, M. International Olympic Committee consensus statement on youth athletic development. Br. J. Sports Med. 2015, 49, 843–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinlay, B.J.; Wallace, P.; Dotan, R.; Long, D.; Tokuno, C.; Gabriel, D.A.; Falk, B. Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. J. Strength Cond. Res. 2018, 32, 3039–3050. [Google Scholar] [CrossRef]
- Waugh, C.M.; Korff, T.; Fath, F.; Blazevich, A.J. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal children. Am. J. Physiol. Heart Circ. Physiol. 2014, 117, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, T.; Funato, K. The effects of resistance training on muscle area and strength in prepubescent age. Ann. Physiol. Anthropol. 1992, 11, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Goesele, A.; Roggo, K.; Wischer, T.; Fischer, S.; Zuerny, C.; Gollhofer, A.; Kriemler, S. Effects and mechanisms of strength training in children. Int. J. Sports Med. 2011, 32, 357–364. [Google Scholar] [CrossRef]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian Society for Exercise Physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Falk, B.; Tenenbaum, G. The effectiveness of resistance training in children. Sports Med. 1996, 22, 176–186. [Google Scholar] [CrossRef] [PubMed]
- de Salles, B.F.; Simao, R.; Miranda, F.; da Silva Novaes, J.; Lemos, A.; Willardson, J.M. Rest interval between sets in strength training. Sports Med. 2009, 39, 765–777. [Google Scholar] [CrossRef]
- Faude, O.; Rössler, R.; Petushek, E.J.; Roth, R.; Zahner, L.; Donath, L. Neuromuscular adaptations to multimodal injury prevention programs in youth sports: A systematic review with meta-analysis of randomized controlled trials. Front. Physiol. 2017, 8, 791. [Google Scholar] [CrossRef] [Green Version]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Folland, J.P. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur. J. Appl. Physiol. 2014, 114, 365–374. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.M.; Wagner, A.; Magnusson, S.P.; Halkjær-Kristensen, J.; Simonsen, E.B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Cannavan, D.; Coleman, D.R.; Horne, S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J. Appl. Physiol. 2007, 103, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Duclay, J.; Martin, A.; Duclay, A.; Cometti, G.; Pousson, M. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2009, 39, 819–827. [Google Scholar] [CrossRef]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef]
- Alegre, L.M.; Jiménez, F.; Gonzalo-Orden, J.M.; Martín-Acero, R.; Aguado, X. Effects of dynamic resistance training on fascicle lengthand isometric strength. J. Sports Sci. 2006, 24, 501–508. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Gill, N.D.; Bronks, R.; Newton, R.U. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med. Sci. Sports Exerc. 2003, 35, 2013–2022. [Google Scholar] [CrossRef]
- Walker, S.; Trezise, J.; Haff, G.G.; Newton, R.U.; Häkkinen, K.; Blazevich, A.J. Increased fascicle length but not patellar tendon stiffness after accentuated eccentric-load strength training in already-trained men. Eur. J. Appl. Physiol. 2020, 120, 2371–2382. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kijowksi, K.N.; Capps, C.R.; Goodman, C.L.; Erickson, T.M.; Knorr, D.P.; Triplett, N.T.; Awelewa, O.O.; McBride, J.M. Short-term resistance and plyometric training improves eccentric phase kinetics in jumping. J. Strength Cond. Res. 2015, 29, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- de Villarreal, E.S.S.; Izquierdo, M.; Gonzalez-Badillo, J.J. Enhancing jump performance after combined vs. maximal power, heavy-resistance, and plyometric training alone. J. Strength Cond. Res. 2011, 25, 3274–3281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streckis, V.; Skurvydas, A.; Ratkevicius, A. Children are more susceptible to central fatigue than adults. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2007, 36, 357–363. [Google Scholar] [CrossRef] [PubMed]
Author | Developmental Change | Sample Age Range | Findings | ||
---|---|---|---|---|---|
Values | Difference (%) | Effect Size (g) | |||
O’ Brien et al. [33] | Muscle PCSA, Volume, Pennation Angle and Fascicle Length | 10 men aged 28.2 ± 3.6 years and 10 boys aged 8.9 ± 0.7 years not participating in organised sport of physical activity outside school. | Muscle PCSA—Men vs. Boys (cm2) | ||
(VL) 74.04 ± 17.04 vs. 31.43 ± 7.40 | 136% | 3.24 | |||
(VM) 55.40 ± 16.12 vs. 21.71 ± 5.40 | 155% | 2.80 | |||
(VI) 59.28 ± 17.87 vs. 30.99 ± 6.70 | 91% | 2.10 | |||
(RF) 43.06 ± 11.88 vs. 20.46 ± 4.80 | 110% | 2.49 | |||
Muscle Volume—Men vs. Boys (cm3) | |||||
(VL) 691.22 ± 147.90 vs. 236.13 ± 42.30 | 193% | 4.18 | |||
(VM) 523.18 ± 133.80 vs. 155.46 ± 29.90 | 237% | 3.79 | |||
(VI) 557.58 ± 143.10 vs. 200.81 ± 47.60 | 178% | 3.35 | |||
(RF) 280.71 ± 66.10 vs. 116.17 ± 23.90 | 142% | 3.31 | |||
Pennation Angle—Men vs. Boys (deg) | |||||
(VL) 15.4 ± 4.3 vs. 15.9 ± 2.3 | 4% | 0.16 | |||
(VM) 25.4 ± 7.6 vs. 23.3 ± 4.8 | 9% | 0.33 | |||
(VI) 13.6 ± 3.4 vs. 11.8 ± 1.6 | 15% | 0.65 | |||
(RF) 29.4 ± 10.2 vs. 20.8 ± 4.4 | 41% | 1.10 | |||
Fascicle Length—Men vs. Boys (mm) | |||||
(VL) 94.5 ± 15.4 vs. 76.6 ± 10.6 | 23% | 1.35 | |||
(VM) 95.9 ± 15.5 vs. 72.7 ± 7.9 | 32% | 1.89 | |||
(VI) 95.3 ± 11.2 vs. 64.7 ± 6.8 | 47% | 3.30 | |||
(RF) 67.7 ± 16.5 vs. 58.4 ± 15.1 | 16% | 0.59 | |||
Kubo et al. [35] | Muscle Thickness and Fascicle Length | 23 sedentary/moderately active men aged 22.2 ± 2.2 years and 20 boys aged 11.2 ± 1.1 years not participating in organised sport of physical activity outside school. | Muscle thickness—Men vs. Boys (mm) | ||
(KE) 24.1 ± 3.3 vs. 17.5 ± 2.1 | 38% | 2.35 | |||
(PF) 21.3 ± 2.7 vs. 14.4 ± 1.4 | 48% | 3.14 | |||
Fascicle length—Men vs. Boys (mm) | |||||
(KE) 90.2 ± 7.9 vs. 65.7 ± 4.1 | 37% | 3.81 | |||
(PF) 56.2 ± 6.2 vs. 47.2 ± 6.2 | 19% | 1.45 | |||
Radnor et al. [36] | Muscle Thickness, Pennation Angle and Fascicle Length | 57 boys aged 12.45 ± 0.54 years (G1), 32 boys aged 14.06 ± 0.68 years (G2), and 37 boys aged 15.81 ± 0.97 years (G3). All boys were involved in regular sport and P.E programs. | Muscle Thickness—G1 vs. G2 vs. G3 (mm) | ||
(GM) 14.7 ± 1.6 vs. 16.8 ± 2.4 vs. 18.1 ± 3.1 | 14%, 8% | 1.09, 0.46 | |||
(VL) 18.3 ± 2.2 vs. 21.3 ± 2.8 vs. 23.8 ± 3.7 | 16%, 12% | 0.92, 0.75 | |||
Pennation Angle—G1 vs. G2 vs. G3 (deg) | |||||
(GM) 19.25 ± 3.07 vs. 20.52 ± 3.60 vs. 22.83 ± 3.87 | 7%, 11% | 0.39, 0.62 | |||
(VL) 16.48 ± 3.22 vs. 17.53 ± 3.98 vs. 18.36 ± 2.74 | 6%, 5% | 0.30, 0.25 | |||
Fascicle Length—G1 vs. G2 vs. G3 (mm) | |||||
(GM) 45.5 ± 8.0 vs. 49.1 ± 9.4 vs. 47.5 ± 9.8 | 8%, 3% | 0.42, 0.17 | |||
(VL) 66.4 ± 13.2 vs. 73.4 ± 15.6 vs. 77.5 ± 19.8 | 11%, 6% | 0.50, 0.23 | |||
Cunha et al. [37] | Muscle CSA, Muscle Thickness, Muscle Volume, Pennation angle and Fascicle Length | 15 boys aged 14.5 ± 0.8 years (G1) and 19 boys aged 16.6 ± 1.2 years (G2). All boys were engaged in formal football training. | Muscle CSA—G1 vs. G2 (cm2) | ||
(RF) 9.8 ± 1.9 vs. 10.3 ± 2.0 | 5% | 0.26 | |||
Muscle Thickness—G1 vs. G2 (cm) | |||||
(KE) 3.6 ± 0.6 vs. 3.8 ± 0.6 | 6% | 0.33 | |||
Muscle Volume—G1 vs. G2 (mL) | |||||
(KE) 1526 ± 307 vs. 1814 ± 410 | 19% | 0.78 | |||
Muscle Pennation Angle—G1 vs. G2 (deg) | |||||
(VL) 15.0 ± 2.3 vs. 14.3 ± 3.2 | 5% | 0.25 | |||
Muscle Fascicle Length—G1 vs. G2 (cm) | |||||
(VL) 8.3 ± 1.4 vs. 8.9 ± 1.6 | 7% | 0.40 |
Author | Developmental Change | Sample Age Range | Findings | ||
---|---|---|---|---|---|
Values | Difference (%) | Effect Size (g) | |||
O’Brien et al. [78] | Tendon CSA and Tendon stiffness | 10 sedentary men aged 28.2 ± 3.6 years and 10 boys aged 8.9 ± 0.7 years | Patellar Tendon CSA—Men vs. Boys (mm2) | ||
114.8 ± 17.8 vs. 75.3 ± 15.0 | 52% | 2.40 | |||
Patellar Tendon stiffness—Men vs. Boys (N/mm) | |||||
1076 ± 87 vs. 555 ± 71 | 94% | 6.56 | |||
Kubo et al. [77] | Tendon CSA, Tendon Length and Tendon Stiffness | 22 adults aged 22.3 ± 0.4 years, 21 children aged 11.2 ± 0.2 years (G1) and 18 children aged 13.8 ± 0.1 years (G2) | Patellar Tendon CSA—Adults vs. G2 vs. G1 (mm2) | ||
82.7 ± 2.1 vs. 65.4 ± 2.8 vs. 49.2 ± 2.3 | 26%, 33% | 7.10, 6.37 | |||
Patellar Tendon length—Adults vs. G2 vs. G1 (mm) | |||||
47.0 ± 0.8 vs. 45.3 ± 0.6 vs. 38.5 ± 0.8 | 4%, 18% | 2.37, 9.51 | |||
Patellar Tendon stiffness—Adults vs. G2 vs. G1 (N/mm) | |||||
1507.2 ± 148.1 vs. 1211.9 ± 136.0 vs. 742.9 ± 55.2 | 24%, 63% | 2.07, 4.66 | |||
Waugh et al. [79] | Tendon Stiffness | 10 men aged 27 ± 2.0 years and nine women aged 24.8 ± 3.2 years (Adults). 21 children aged 6.4 ± 0.8 years (G1), and 29 children aged 9.1 ± 0.5 years (G2) | Achilles Tendon Stiffness—Adults vs. G2 vs. G1 (N/mm) | ||
259.2 ± 44.2 vs. 162.4 ± 42.9 vs. 100.8 ± 30.4 | 60%, 61% | 2.23, 1.61 | |||
Kubo et al. [31] | Tendon CSA and Tendon Length | 23 men aged 22.2 ± 2.2 years, 22 children aged 11.2 ± 1.1 years (G1) and 19 children aged 13.8 ± 0.6 years (G2) | Achilles Tendon CSA—Adults vs. G2 vs. G1 (mm2) | ||
74.7 ± 14.7 vs. 76.9 ± 16.7 vs. 60.1 ± 13.6 | 3%, 28% | 0.14, 1.11 | |||
Achilles Tendon Length—Adults vs. G2 vs. G1 (mm) | |||||
275.1 ± 20.8 vs. 263.9 ± 17.5 vs. 229.1 ± 15.2 | 4%, 15% | 0.58, 2.13 | |||
O’Brien et al. [49] | Tendon Length | 10 sedentary men aged 28.2 ± 3.6 years and nine boys aged 8.9 ± 0.7 years who did not participate in any organised sport or physical activity outside school | Tendon length—Men vs. Boys (mm) | ||
(VL) 51.7 ± 3.4 vs. 42.2 ± 3 | 23% | 2.95 | |||
(VM) 63 ± 4.8 vs. 49 ± 5.3 | 29% | 2.78 | |||
(VI) 30.2 ± 3.2 vs. 25 ± 3.9 | 21% | 1.47 | |||
(RF) 124.1 ± 7.7 vs. 96.9 ± 3.8 | 28% | 4.40 | |||
Kubo et al. [35] | Tendon Length, Tendon Thickness and Tendon Stiffness | 23 sedentary men aged 22.2 ± 2.2 years and 20 boys aged 11.2 ± 1.1 years not involved in any specific training program | Tendon length—Men vs. Boys (mm) | ||
(KE) 313.8 ± 15.6 vs. 269 ± 15.3 | 17% | 2.90 | |||
(PF) 275.1 ± 20.8 vs. 229.1 ± 15.2 | 20% | 2.50 | |||
Tendon thickness Men vs. Boys (mm) | |||||
(KE) 3.30 ± 0.38 vs. 2.61 ± 0.30 | 26% | 2.00 | |||
(PF) 5.14 ± 0.17 vs. 4.72 ± 0.46 | 9% | 1.25 | |||
Tendon stiffness—Men vs. Boys (N/mm) | |||||
(KE) 57.6 ± 19.8 vs. 23.2 ± 14.0 | 148% | 1.98 | |||
(PF) 35.3 ± 13.1 vs. 20.3 ± 9.5 | 74% | 1.30 |
Author | Developmental Change | Sample Age Range | Test | Findings | ||
---|---|---|---|---|---|---|
Values | Difference (%) | Effect Size (g) | ||||
Grosset et al. [93] | Muscle Activation | 9 sedentary adults aged 21 ± 2.3 years, 6 children aged 7 years (G7), 7 children aged 8 years (G8), 8 children aged 9 years (G9), 11 children aged 10 years (G10) and 5 children aged 11 years (G11) | MVC isometric plantar flexion | TS Amplitude—G7 vs. G8 vs. G9 vs. G10 vs. G11 vs. Adults (µV) | ||
189 ± 38 vs. 216 ± 45 vs. 286 ± 81 vs. 289 ± 92 vs. 365 ± 109 vs. 641 ± 122 | 14%, 32%, 1%, 26%, 76% | 0.64, 1.05, 0.03, 0.78, 2.34 | ||||
Halin et al. [82] | Differential Motor Unit Recruitment | 12 men aged 21.5 ± 4.5 years and 15 young boys aged 10.5 ± 0.9 years, all physically active but not involved in intensive training | MVC isometric elbow flexion | Bicep Brachii MPF—Men vs. Boys (Hz) | ||
106.78 ± 30.88 vs. 86.77 ± 14.02 | 23% | 0.87 | ||||
Falk et al. [81] | Electromechanical Delay | 16 men aged 22.1 ± 2.8 years and 15 boys aged 9.6 ± 1.6 years, all physically active | MVC isometric elbow flexion and extension | Bicep Brachii EMD (flexion)—Men vs. Boys (ms) | ||
47.6 ± 17.5 vs. 75.5 ± 28.4 | 59% | 1.17 | ||||
Tricep Brachii EMD (extension)—Men vs. Boys (ms) | ||||||
38 ± 12 vs. 65 ± 15 Ŧ | 71% | 1.98 | ||||
Lazaridis et al. [106] | Pre-activation | 12 adult males aged 25 ± 2.7 years 12 and prepubescent boys aged 9.8 ± 0.6 years, all untrained | 20 cm drop jump | Preactivation EMG Duration—Men vs. Boys (ms) | ||
(GM) 58 ± 19 vs. 35 ± 17 Ŧ | 66% | 1.28 | ||||
(SOL) 47 ± 18 vs. 28 ± 7 Ŧ | 68% | 1.39 | ||||
(TA) 41 ± 17 vs. 29 ± 12 Ŧ | 41% | 0.82 | ||||
Preactivation Amplitude—Men vs. Boys (normalised to max) | ||||||
(GM) 0.2 ± 0.8 vs. 0.1 ± 0.7 Ŧ | 29% | 0.05 | ||||
(SOL) 0.1 ± 0.7 vs. 0.1 ± 0.6 Ŧ | 27% | 0.05 | ||||
(TA) 0.3 ± 0.2 vs. 0.1 ± 0.1 Ŧ | 79% | 0.78 | ||||
Lloyd et al. [107] | Stretch reflex activity | 11 boys aged 9.44 ± 0.27 (G9), 11 boys aged 12.68 ± 0.30 (G12), and 10 boys aged 15.89 ± 0.31 (G15), physically active but not involved in any strength and conditioning | Sub-maximal (SMax) and maximal hopping | SMax Hopping—SOL+ VL Muscle Activity (% GC) | ||
Short Latency—G9 vs. G12 vs. G15 | ||||||
26.89 ± 4.21 vs. 31.88 ± 4.60 vs. 33.71 ± 4.60 | 19%, 6% | 1.13, 0.40 | ||||
Medium Latency—G9 vs. G12 vs. G15 | ||||||
21.48 ± 3.28 vs. 20.84 ± 3.37 vs. 21.37 ± 2.36 | 3%, 1% | 0.19, 0.18 | ||||
Long Latency—G9 vs. G12 vs. G15 | ||||||
12.22 ± 3.12 vs. 10.15 ± 3.16 vs. 9.70 ± 2.94 | 20%, 26% | 0.66, 0.15 | ||||
Maximal Hopping—SOL + VL Muscle Activity (% GC) | ||||||
Short Latency—G9 vs. G12 vs. G15 | ||||||
18.51 ± 6.14 vs. 22.57 ± 5.81 vs. 18.63 ± 4.20 | 22%, 21% | 0.68, 0.78 | ||||
Medium Latency—G9 vs. G12 vs. G15 | ||||||
19.12 ± 4.36 vs. 20.34 ± 3.85 vs. 20.07 ± 4.47 | 6%, 1% | 0.30, 0.06 | ||||
Long Latency—G9 vs. G12 vs. G15 | ||||||
16.79 ± 3.47 vs. 16.59 ± 3.33 vs. 16.95 ± 4.15 | 1%, 2% | 0.06, 0.10 | ||||
Grosset et al. [93] | Co-contraction | 9 sedentary adults aged 21 ± 2.3 years, 6 children aged 7 years (G7), 7 children aged 8 years (G8), 8 children aged 9 years (G9), 11 children aged 10 years (G10) and 5 children aged 11 years (G11) | MVC isometric plantar flexion | CI (TS: TA)—G7 vs. G8 vs. G9 vs. G10 vs. G11 vs. Adults | ||
0.27 ± 0.03 vs. 0.26 ± 0.02 vs. 0.24 ± 0.03 vs. 0.20 ± 0.03 vs. 0.19 ± 0.04 vs. 0.13 ± 0.01 Ŧ | 4%, 8%, 20%, 5%, 46% | 0.40, 0.77, 1.33, 0.30, 2.45 | ||||
Frost et al. [108] | Co-contraction | 10 children aged 7–8 years (G1), 10 children aged 10–12 (G2), 10 children aged 15–16 years (G3) | Submaximal treadmill running | CI (running speed at 1.34 m/s)—G1 vs. G2 | ||
(SOL: TA) 13.5 ± 6.3 vs. 10 ± 4.7 Ŧ | 35% | 0.63 | ||||
(VL: H) 8.0 ± 3.2 vs. 6.5 ± 3.2 Ŧ | 23% | 0.47 | ||||
CI (running speed at 2.46 m/s)—G2 vs. G3 | ||||||
(SOL: TA) 16 ± 4.7 vs. 13.5 ± 7.9 Ŧ | 19% | 0.38 | ||||
(VL: H) 14.5 ± 7.8 vs. 8 ± 4.7 Ŧ | 81% | 1.01 |
Author | Sample Age Range | Training Intervention | Findings | ||
---|---|---|---|---|---|
Values | Difference (%) | Effect Size (g) | |||
Ramsay et al. [20] | CON-13, EXP-13, aged between 9–11 years | 20 weeks, 3 sessions/week Circuit Training Phase 1: 70–75% 1RM Phase 2: 80–85% 1 RM Preacher curl, double leg extension, leg press, bench press, behind the neck pulldown and sit-ups/trunk curls | Muscle CSA—Baseline vs. Post-intervention (cm2) | ||
(KE) CON: 37.5 ± 5.4 vs. 41 ± 7.2 Ŧ | 9% | 0.55 | |||
EXP: 40 ± 7.2 vs. 44 ± 7.2 Ŧ | 10% | 0.56 | |||
∆EXP v ∆CON | 0.08 | ||||
(EF) CON: 8.6 ± 2.5 vs. 9.4 ± 1.8 Ŧ | 9% | 0.37 | |||
EXP: 7.4 ± 2.9 vs. 8.2 ± 2.2 Ŧ | 11% | 0.31 | |||
∆EXP v ∆CON | 0.00 | ||||
MUA—Baseline vs. Post-intervention (% MUA) | |||||
(KE) CON: 80 vs. 79 Ŧ | 1% | ||||
EXP: 75 vs. 86 Ŧ | 15% | ||||
(EF) CON: 94.5 vs. 93 Ŧ | 2% | ||||
EXP: 84 vs. 96 Ŧ | 14% | ||||
Fukunaga et al. [158] | (G1) 7 ± 0.3 years. CON-8, EXP-8 (G2) 9 ± 0.3 years. CON-8, EXP-10 (G3) 11 ± 0.2 years. CON-8, EXP-10 | 12 weeks, 3 sessions/week, 2/day Three maximally sustained isometric contractions of elbow flexion for 10 s | Upper Arm CSA—Baseline vs. Post-intervention (cm2) | ||
(G1) CON: 14.4 ± 3.9 vs. 14.8 ± 4.2 | 3% | 0.07 | |||
EXP: 12.5 ± 2.6 vs. 13.5 ± 1.3 | 8% | 0.28 | |||
∆EXP v ∆CON | 0.17 | ||||
(G2) CON: 16.3 ± 2.9 vs. 16.7 ± 2.7 | 2% | 0.10 | |||
EXP: 14.8 ± 3.0 vs. 15.9 ± 3.1 | 7% | 0.29 | |||
∆EXP v ∆CON | 0.23 | ||||
(G3) CON: 17.6 ± 2.3 vs. 18.7 vs. 2.8 | 6% | 0.36 | |||
EXP: 16.6 ± 2.6 vs. 19.1 ± 3.1 | 15% | 0.78 | |||
∆EXP v ∆CON | 0.55 | ||||
Granacher et al. [159] | CON-15, aged 8.7 ± 0.5 years EXP- 17, aged 8.6 ± 0.5 years | 10 weeks, 2 sessions/week, 90 min 3 sets of 10-12 reps, 70–80% 1RM Leg press, knee extension/flexion, seated calf raises, hip abduction/adduction and core exercises. | M. Quadricep CSA—Baseline vs. Post-intervention (mm2) | ||
CON: 295.0 ± 49.7 vs. 299.4 ± 55.2 | 1% | 0.08 | |||
EXP: 311.0 ± 41.8 vs. 318.0 ± 14.4 | 2% | 0.15 | |||
∆EXP v ∆CON | 0.06 | ||||
Waugh et al. [157] | CON-10, aged 8.9 ± 0.3 years EXP-10, aged 8.9 ± 0.2 years | 10 weeks, 2 sessions/week Plantar flexion resistance training, within a circuit, with intensity based on progressive loading starting at 8–15 RM Control group had the plantar flexion resistance training replaced by rest. | Achilles Tendon CSA—Baseline vs. Post-intervention (mm2) | ||
CON: 40.7 ± 7.2 vs. 41.8 ± 7.9 | 3% | 0.12 | |||
EXP: 35.8 ± 6.3 vs. 36.7 ± 5.9 | 3% | 0.12 | |||
∆EXP v ∆CON | 0.03 | ||||
Achilles Tendon Length—Baseline vs. Post-intervention (mm) | |||||
CON: 151.6 ± 32.9 vs. 153.8 ± 29.4 | 1% | 0.05 | |||
EXP: 160.3 ± 21.3 vs. 164.5 ± 24.3 | 3% | 0.16 | |||
∆EXP v ∆CON | 0.07 | ||||
Achilles Tendon Stiffness—Baseline vs. Post-intervention (N/mm) | |||||
CON: 162.5 ± 41.8 vs. 167.4 ± 36.0 | 3% | 0.09 | |||
EXP: 138.4 ± 36.7 vs. 177.8 ± 31.9 | 28% | 0.87 | |||
∆EXP v ∆CON | 0.84 | ||||
McKinlay et al. [156] | CON-14, aged 12.5 ± 0.3 years EXP 1-14, aged 12.5 ± 0.7 years EXP 2-13, aged 12.6 ± 0.7 years | 8 weeks, 3 sessions/week, 45 min EXP 1-Traditional resistance training, 3 sets of 8-12 reps, <80% 1RM Squats variations, lunge variations, step-ups EXP 2-plyometric training, 3 sets, 10–12 foot contacts/exercise CMJ variations, TJ variations, DJ, long jumps, jumping lunges, lateral hops | VL Thickness—Baseline vs. Post-intervention (mm) | ||
CON: 20.3 ± 1.9 vs. 20.4 ± 1.7 | 0% | 0.05 | |||
EXP 1: 19.9 ± 2.4 vs. 21.2 ± 3.8 | 7% | 0.47 | |||
EXP 2: 20.1 ± 1.2 vs. 21.6 ± 3.6 | 7% | 1.07 | |||
∆EXP2 v ∆EXP1 v ∆CON | 0.10, 0.54 | ||||
VL EMD—Baseline vs. Post-intervention (ms) | |||||
CON: 48.4 ± 9.5 vs. 49.7 ± 14.6 | 3% | 0.12 | |||
EXP 1: 47.2 ± 9.5 vs. 47.8 ± 7.0 | 1% | 0.05 | |||
EXP 2: 43.2 ± 7.6 vs. 40.7 ± 6.9 | 6% | 0.28 | |||
∆EXP2 v ∆EXP1 v ∆CON | 0.35, 0.07 | ||||
Ramsay et al. [20] | CON-13, EXP-13, aged between 9–11 years | 20 weeks, 3 sessions/week Circuit Training Phase 1: 70–75% 1RM Phase 2: 80–85% 1 RM Preacher curl, double leg extension, leg press, bench press, behind the neck pulldown and sit-ups/trunk curls | Muscle CSA—Baseline vs. Post-intervention (cm2) | ||
(KE) CON: 37.5 ± 5.4 vs. 41 ± 7.2 Ŧ | 9% | 0.55 | |||
EXP: 40 ± 7.2 vs. 44 ± 7.2 Ŧ | 10% | 0.56 | |||
∆EXP v ∆CON | 0.08 | ||||
(EF) CON: 8.6 ± 2.5 vs. 9.4 ± 1.8 Ŧ | 9% | 0.37 | |||
EXP: 7.4 ± 2.9 vs. 8.2 ± 2.2 Ŧ | 11% | 0.31 | |||
∆EXP v ∆CON | 0.00 | ||||
MUA—Baseline vs. Post-intervention (% MUA) | |||||
(KE) CON: 80 vs. 79 Ŧ | 1% | ||||
EXP: 75 vs. 86 Ŧ | 15% | ||||
(EF) CON: 94.5 vs. 93 Ŧ | 2% | ||||
EXP: 84 vs. 96 Ŧ | 14% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumkur Anil Kumar, N.; Oliver, J.L.; Lloyd, R.S.; Pedley, J.S.; Radnor, J.M. The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports 2021, 9, 59. https://doi.org/10.3390/sports9050059
Tumkur Anil Kumar N, Oliver JL, Lloyd RS, Pedley JS, Radnor JM. The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports. 2021; 9(5):59. https://doi.org/10.3390/sports9050059
Chicago/Turabian StyleTumkur Anil Kumar, Nakul, Jon L. Oliver, Rhodri S. Lloyd, Jason S. Pedley, and John M. Radnor. 2021. "The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review" Sports 9, no. 5: 59. https://doi.org/10.3390/sports9050059
APA StyleTumkur Anil Kumar, N., Oliver, J. L., Lloyd, R. S., Pedley, J. S., & Radnor, J. M. (2021). The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports, 9(5), 59. https://doi.org/10.3390/sports9050059