Association and Agreement between Reactive Strength Index and Reactive Strength Index-Modified Scores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
2.3.1. DJ
2.3.2. CMJ
2.4. Statistical Analysis
3. Results
3.1. RMANOVA
3.2. Linear Regression
3.3. Bland–Altman Agreement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.N.; Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Groeber, M.; Reinhart, L.; Kornfeind, P.; Baca, A. The contraction modalities in a stretch-shortening cycle in animals and single joint movements in humans: A systematic review. J. Sports Sci. Med. 2019, 18, 604–615. [Google Scholar]
- Fukutani, A.; Isaka, T.; Herzog, W. Evidence for muscle cell-based mechanisms of enhanced performance in stretch-shortening cycle in skeletal muscle. Front. Physiol. 2021, 11, e609553. [Google Scholar] [CrossRef] [PubMed]
- Fukutani, A.; Joumaa, V.; Herzog, W. Influence of residual force enhancement and elongation of attached cross-bridges on stretch-shortening cycle in skinned muscle fibers. Physiol. Rep. 2017, 5, e13477. [Google Scholar] [CrossRef] [PubMed]
- Joumaa, V.; Fukutani, A.; Herzog, W. Energy cost of force production after a stretch-shortening cycle in skinned muscle fibers: Does muscle efficiency increase? Front. Physiol. 2020, 11, e567538. [Google Scholar] [CrossRef] [PubMed]
- Helm, M.; Freyler, K.; Waldvogel, J.; Gollhofer, A.; Ritzmann, R. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height. Eur. J. Appl. Physiol. 2019, 119, 1981–1999. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B. Laboratory strength assessment of athletes. New Stud. Athlet. 1995, 10, 86–96. [Google Scholar]
- Schmidtbleicher, D. Training for Power Events. In The Encyclopaedia of Sports Medicine; Komi, P.V., Ed.; Blackwell: Oxford, UK, 1992; Volume 3, pp. 169–179. [Google Scholar]
- Verkhoshansky, Y. Are depth jumps useful? Yessis Rev. Soviet Phys. Educ. Sports 1969, 3, 75–78. [Google Scholar]
- de Villarreal, E.S.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Struzik, A.; Juras, G.; Pietraszewski, B.; Rokita, A. Effect of drop jump technique on the reactive strength index. J. Hum. Kinet. 2016, 52, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addie, C.D.; Arnett, J.E.; Neltner, T.J.; Straughn, M.K.; Greska, E.K.; Cosio-Lima, L.; Brown, L.E. Effects of drop height on drop jump performance. Int. J. Kinesiol. Sports Sci. 2019, 7, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Relationship between reactive strength index variants in rugby league players. J. Strength Cond. Res. 2021, 35, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Stratford, C.; Dos’Santos, T.; McMahon, J.J. A comparison between the drop jump and 10/5 repeated jumps test to measure the reactive strength index. Prof. Strength Cond. 2020, 57, 23–28. [Google Scholar]
- Harper, D.; Hobbs, S.; Moore, J. The 10 to 5 repeated jump test. A new test for evaluating reactive strength. In Proceedings of the British Association of Sports and Exercises Sciences Student Conference, Chester, UK, 12–13 April 2011. [Google Scholar]
- Earp, J.E.; Kraemer, W.J.; Cormie, P.; Volek, J.S.; Maresh, C.M.; Joseph, M.; Newton, R.U. Influence of muscle–tendon unit structure on rate of force development during the squat, countermovement, and drop jumps. J. Strength Cond. Res. 2011, 25, 340–347. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Schmitt, L.C.; Uhl, T.L.; Hewett, T.E. Preferential quadriceps activation in female athletes with incremental increases in landing intensity. J. Appl. Biomech. 2011, 27, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Mrdakovic, V.; Ilic, D.B.; Jankovic, N.; Rajkovic, Z.; Stefanovic, D. Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J. Sports Sci. Med. 2008, 7, 269–278. [Google Scholar]
- Santello, M. Review of motor control mechanisms underlying impact absorption from falls. Gait Posture 2005, 21, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.J.; Shultz, S.J. Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping. J. Athl. Train. 2010, 45, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Doğan, N.Ö. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Giordanelli, M.D.; Malloy, P.J.; Geiser, C.F. Biomechanical determinants of the reactive strength index during drop jumps. Int. J. Sport. Physiol. 2018, 13, 44–49. [Google Scholar] [CrossRef]
- Markwick, W.J.; Bird, S.P.; Tufano, J.J.; Seitz, L.B.; Haff, G.G. The intraday reliability of the reactive strength index calculated from a drop jump in professional men’s basketball. Int. J. Sport. Physiol. 2015, 10, 482–488. [Google Scholar] [CrossRef]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Winter, D.A. Signal Processing. In Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- McErlain-Naylor, S.; King, M.; Pain, M.T.G. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J. Sports Sci. 2014, 32, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Louder, T.; Thompson, B.J.; Banks, N.; Bressel, E. A mixed-methods approach to evaluating the internal validity of the reactive strength index. Sports 2019, 7, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baca, A. A comparison of methods for analyzing drop jump performance. Med. Sci. Sports Exerc. 1999, 31, 437–442. [Google Scholar] [CrossRef]
- Beckham, G.K.; Suchomel, T.J.; Sole, C.J.; Bailey, C.A.; Grazer, J.L.; Kim, S.B.; Talbot, K.B.; Stone, M.H. Influence of sex and maximum strength on reactive strength index-modified. J. Sports Sci. Med. 2019, 18, 65–72. [Google Scholar]
- Campbell, M.J.; Swinscow, T.D.V. Statistics at Square One; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Beattie, K.; Flanagan, E.P. Establishing the reliability & meaningful change of the drop-jump reactive strength index. J. Aust. Strength Cond. 2015, 23, 12–18. [Google Scholar]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [Green Version]
- Beattie, K.; Carson, B.P.; Lyons, M.; Kenny, I.C. The relationship between maximal strength and reactive strength. Int. J. Sport. Physiol. 2017, 12, 548–553. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-specific predictors of countermovement jump performance that distinguish good from poor jumpers. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Feldmann, C.R.; Weiss, L.W.; Schilling, B.K.; Whitehead, P.N. Association of drop vertical jump displacement with select performance variables. J Strength Cond. Res. 2012, 26, 1215–1225. [Google Scholar] [CrossRef]
- Phillips, J.H.; Flanagan, S.P. Effect of ankle joint contact angle and ground contact time on depth jump performance. J Strength Cond. Res. 2015, 29, 3143–3148. [Google Scholar] [CrossRef]
- Smith, J.P.; Kernozek, T.W.; Kline, D.E.; Wright, G.A. Kinematic and kinetic variations among three depth jump conditions in male NCAA division III athletes. J Strength Cond. Res. 2011, 25, 94–102. [Google Scholar] [CrossRef]
- Khuu, S.; Musalem, L.L.; Beach, T.A. Verbal instructions acutely affect drop vertical jump biomechanics—Implications for athletic performance and injury risk assessments. J. Strength Cond. Res. 2015, 29, 2816–2826. [Google Scholar] [CrossRef]
- Sánchez-Sixto, A.; McMahon, J.J.; Floría, P. Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sports Biomech. 2021. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Kaloheri, O.; Terzis, G.; Veligekas, P.; Brown, L.E. Comparison between unilateral and bilateral plyometric training on single-and double-leg jumping performance and strength. J. Strength Cond. Res. 2019, 33, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Cornell, J.A.; Berger, R.D. Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology 1987, 77, 63–70. [Google Scholar] [CrossRef]
- Leukel, C.; Taube, W.; Lorch, M.; Gollhofer, A. Changes in predictive motor control in drop-jumps based on uncertainties in task execution. Hum. Mov. Sci. 2012, 31, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helm, M.; Freyler, K.; Waldvogel, J.; Lauber, B.; Gollhofer, A.; Ritzmann, R. Anticipation of drop height affects neuromuscular control and muscle-tendon mechanics. Scand. J. Med. Sci. Sports 2020, 30, 46–63. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Barker, L.A.; Harry, J.R.; Mercer, J.A. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J. Strength Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of the reactive strength index modified on force–and power–time curves. Int. J. Sport. Physiol. 2018, 13, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Sarvestan, J.; Cheraghi, M.; Sebyani, M.; Shirzad, E.; Svoboda, Z. Relationships between force-time curve variables and jump height during countermovement jumps in young elite volleyball players. Acta Gymnica 2018, 48, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of methods that assess lower-body stretch-shortening cycle utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar] [CrossRef]
- Pavei, G.; Seminati, E.; Cazzola, D.; Minetti, A.E. On the estimation accuracy of the 3D body center of mass trajectory during human locomotion: Inverse vs. forward dynamics. Front. Physiol. 2017, 8, e129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assessment | Computation |
---|---|
Reactive Strength (slow SSC; Young [8]) | |
RSI (fast SSC; Young [8]) | |
RSI-mod (slow SSC; Ebben and Petushek [15]) |
NCAA DI Basketball | Young Adults | |||
---|---|---|---|---|
Male | Female | Male | Female | |
n | 10 | 11 | 13 | 13 |
Age (years) | 20.1 (1.3) | 19.6 (0.8) | 23.9 (1.7) | 23.3 (1.8) |
Body mass (kg) | 91.6 (11.8) | 74.4 (10.3) | 80.2 (12.5) | 68.0 (14.5) |
Height (cm) | 196.9 (8.0) | 181.0 (8.3) | 177.5 (8.4) | 167.3 (8.6) |
Condition | Theoretical vi (m s−1) | Estimated vi (m s−1) | Estimated Drop Height (m) |
---|---|---|---|
0.51 m DJ | 3.16 | 2.94 (0.39) | 0.44 (0.10) |
0.66 m DJ | 3.60 | 3.31 (0.29) | 0.56 (0.09) |
0.81 m DJ | 3.99 | 3.65 (0.17) | 0.68 (0.06) |
Measure | RSI (0.51 m DJ) | RSI (0.66 m DJ) | RSI (0.81 m DJ) | RSI-mod (CMJ) |
---|---|---|---|---|
ICC | 0.91 (0.87–0.95) | 0.89 (0.84–0.94) | 0.88 (0.83–0.94) | 0.95 (0.93–0.97) |
CV; % | 12 (11–13) | 13 (11–15) | 15 (13–17) | 8 (6–9) |
Variable | 0.51 m DJ | 0.66 m DJ | 0.81 m DJ | CMJ | ηp2 (95% CI) |
---|---|---|---|---|---|
RSI/RSI-mod | 0.97 (0.46) * | 1.05 (0.49) * | 1.03 (0.52) * | 0.42 (0.16) | 0.15 (0.06–0.23) |
JH (m) | 0.37 (0.15) | 0.39 (0.15) | 0.40 (0.16) | 0.35 (0.12) | 0.02 (0.00–0.04) |
GCT/TTT (s) | 0.41 (0.11) * | 0.40 (0.11) * | 0.41 (0.10) * | 0.88 (0.26) | 0.37 (0.27–0.47) |
Predictor | Response | F | β | Intercept | r | R2 | SEE |
---|---|---|---|---|---|---|---|
RSI-mod | RSI (0.51 m DJ) | 38.1 * | 0.26 * | 0.18 * | 0.69 | 0.47 | 0.30 |
RSI-mod | RSI (0.66 m DJ) | 11.0 Ұ | 0.16 * | 0.25 * | 0.45 | 0.20 | 0.39 |
RSI-mod | RSI (0.81 m DJ) | 16.7 * | 0.20 * | 0.22 * | 0.53 | 0.28 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louder, T.; Thompson, B.J.; Bressel, E. Association and Agreement between Reactive Strength Index and Reactive Strength Index-Modified Scores. Sports 2021, 9, 97. https://doi.org/10.3390/sports9070097
Louder T, Thompson BJ, Bressel E. Association and Agreement between Reactive Strength Index and Reactive Strength Index-Modified Scores. Sports. 2021; 9(7):97. https://doi.org/10.3390/sports9070097
Chicago/Turabian StyleLouder, Talin, Brennan J. Thompson, and Eadric Bressel. 2021. "Association and Agreement between Reactive Strength Index and Reactive Strength Index-Modified Scores" Sports 9, no. 7: 97. https://doi.org/10.3390/sports9070097
APA StyleLouder, T., Thompson, B. J., & Bressel, E. (2021). Association and Agreement between Reactive Strength Index and Reactive Strength Index-Modified Scores. Sports, 9(7), 97. https://doi.org/10.3390/sports9070097