Impact of Low Volume Velocity-Controlled vs. Repetition to Failure Resistance Training Session on Measures of Explosive Performance in a Team of Adolescents Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Assessments
2.3.2. Training Exercises
2.3.3. Conditioning Resistance Exercise Protocols
2.4. Statistical Analysis
3. Results
3.1. Dependent Variables
3.2. Linear 20-m Sprint (S-20)
3.3. Vertical Jump (VJ)
3.4. Seated 4 kg Medicine Ball Toss (MBT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naclerio, F.; Faigenbaum, A.D.; Larumbe-Zabala, E.; Ratamess, N.A.; Kang, J.; Friedman, P.; Ross, R.E. Effectiveness of Different Postactivation Potentiation Protocols with and Without Whole Body Vibration on Jumping Performance in College Athletes. J. Strength Cond. Res. 2014, 28, 232–239. [Google Scholar] [CrossRef]
- Smilios, I.; Pilianidis, T.; Sotiropoulos, K.; Antonakis, M.; Tokmakidis, S.P. Short-term effects of selected exercise and load in contrast training on vertical jump performance. J. Strength Cond. Res. 2005, 19, 135–139. [Google Scholar]
- De Villarreal, E.S.; González-Badillo, J.J.; Izquierdo, M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur. J. Appl. Physiol. 2007, 100, 393–401. [Google Scholar] [CrossRef]
- Burkett, L.N.; Phillips, T.W.; Ziuraitis, J. The best warm-up for the vertical jump in college-age athletic men. J. Strength Cond. Res. 2005, 19, 673–676. [Google Scholar] [PubMed]
- MacIntosh, B.R.; Robillard, M.-E.; Tomaras, E.K. Should postactivation potentiation be the goal of your warm-up? Appl. Physiol. Nutr. Metab. 2012, 37, 546–550. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postacitvation potentation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Iacono, A.D.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; LoTurco, I.; Behm, D.G. A New Taxonomy for Postactivation Potentiation in Sport. Int. J. Sports Physiol. Perform. 2020, 15, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Mola, J.N.; Bruce-Low, S.S.; Burnet, S.J. Optimal Recovery Time for Postactivation Potentiation in Professional Soccer Players. J. Strength Cond. Res. 2014, 28, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Behrens, M.; Chaabene, H.; Granacher, U.; Maffiuletti, N.A. Time to differentiate postactivation ‘potentiation’ from ‘performance enhancement’ in the strength and conditioning community. Sports Med. 2020, 50, 1559. [Google Scholar] [CrossRef] [PubMed]
- Russel, M.; King, A.; Bracken, R.M.; Cook, C.J.; Giroud, T.; Kilduff, L.P. A comparison of different modes of morning priming exercise on afternoon performance. Int. J. Sports Physiol. Perform. 2016, 11, 763–767. [Google Scholar] [CrossRef]
- Blazevich, A.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [Green Version]
- West, D.; Cunningham, D.; Crewther, B.T.; Cook, C.; Kilduff, L.P. Influence of Ballistic Bench Press on Upper Body Power Output in Professional Rugby Players. J. Strength Cond. Res. 2013, 27, 2282–2287. [Google Scholar] [CrossRef]
- Tobin, D.P.; Delahunt, E. The Acute Effect of a Plyometric Stimulus on Jump Performance in Professional Rugby Players. J. Strength Cond. Res. 2014, 28, 367–372. [Google Scholar] [CrossRef]
- Naclerio, F.; Chapman, M.; Larumbe-Zabala, E.; Massey, B.; Neil, A.; Triplett, T.N. Effects of Three Different Conditioning Activity Volumes on the Optimal Recovery Time for Potentiation in College Athletes. J. Strength Cond. Res. 2015, 29, 2579–2585. [Google Scholar] [CrossRef]
- Kobal, R.; Pereira, L.; Kitamura, K.; Paulo, A.C.; Ramos, H.A.; Carmo, E.; Roschel, H.; Tricoli, V.; Bishop, C.; Loturco, I. Post-Activation Potentiation: Is there an Optimal Training Volume and Intensity to Induce Improvements in Vertical Jump Ability in Highly-Trained Subjects? J. Hum. Kinet. 2019, 66, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evetovich, T.K.; Conley, D.S.; McCawley, P.F. Postactivation Potentiation Enhances Upper- and Lower-Body Athletic Performance in Collegiate Male and Female Athletes. J. Strength Cond. Res. 2015, 29, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef]
- Weakley, J.; Wilson, K.; Till, K.; Read, D.; Darrall-Jones, J.; Roe, G.A.; Phibbs, P.; Jones, B. Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. J. Strength Cond. Res. 2019, 33, 2420–2425. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Ramirez-Lopez, C.; McLaren, S.; Dalton-Barron, N.; Weaving, D.; Jones, B.; Till, K.; Banyard, H. The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat. Int. J. Sports Physiol. Perform. 2020, 15, 180–188. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, J.D.; Wenger, H.A.; Green, H.J. Physiological Testing of the High-Performance Athlete. Med. Sci. Sports Exerc. 1993, 25, 305. [Google Scholar] [CrossRef]
- Reynolds, J.M.; Gordon, T.J.; Robergs, R.A. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J. Strength Cond. Res. 2006, 20, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement Jump Analysis Using Different Portable Devices: Implications for Field Testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Viitasalo, J.T. Evaluation of Explosive Strength for Young and Adult Athletes. Res. Q. Exerc. Sport 1988, 59, 9–13. [Google Scholar] [CrossRef]
- Wretenberg, P.; Feng, Y.; Arborelius, U.P. High- and low-bar squatting techniques during weight-training. Med. Sci. Sports Exerc. 1996, 28, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Coretalla, G.; Tornatore, G.; Longo, S.; Esposito, F.; Ce, E. Specific prime movers’s excitation during free weight bench press variations and chest press machine in competitive bodybuilders. Eur. J. Sport. Sci. 2019, 20, 571–579. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsly, C.; McMaster, D.T.; Reyneke, J.H.T.; Cronin, J.B. Effects of a six-week hip thrust vs front squat resistance training program on performance in adolecent males: A randomized controlled trial. J. Strength Cond. Res. 2017, 4, 999–1008. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; McLaren, S.; Ramirez-Lopez, C.; García-Ramos, A.; Dalton-Barron, N.; Banyard, H.; Mann, B.; Weaving, D.; Jones, B. Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J. Sports Sci. 2020, 38, 477–485. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, M.; Larumbe-Zabala, E.; Gosss-Sampson, M.; Colpus, M.; Triplett, N.T.; Naclerio, F. Perceptual, Mechanical, and Electromyographic Responses to Different Relative Loads in the Parallel Squat. J. Strength Cond. Res. 2019, 33, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Wellek, S.; Blettner, M. Vom richtigen Umgang mit dem Crossover-Design in klinischen Studien: Teil 18 der Serie zur Bewertung wissenschaftlicher Publikationen. Dtsch. Arztebl. Int. 2012, 109, 276–281. [Google Scholar]
- Tsoukos, A.; Veligekas, P.; Brown, L.; Terzis, G.; Bogdanis, G.C. Delayed Effects of a Low-Volume, Power-Type Resistance Exercise Session on Explosive Performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef]
- Vandenboom, R.; Grange, R.W.; Houston, M.E. Threshold for force potentiation associated with skeletal myosin phosphorylation. Am. J. Physiol. Physiol. 1993, 265, C1456–C1462. [Google Scholar] [CrossRef]
- Cook, C.J.; Kilduff, L.P.; Crewther, B.T.; Beaven, M.; West, D.J. Morning based strength training improves afternoon physical performance in rugby union players. J. Sci. Med. Sport 2014, 17, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, J.M.; García-Ramos, A.; Colomer-Poveda, D.; Tvarijonaviciute, A.; Cerón, J.; Jiménez-Reyes, P.; Márquez, G. Resistance Training to Failure vs. Not to Failure: Acute and Delayed Markers of Mechanical, Neuromuscular, and Biochemical Fatigue. J. Strength Cond. Res. 2021, 35, 886–893. [Google Scholar] [CrossRef]
Variable | Velocity Control Protocol | Repetitions to Failure Protocols |
---|---|---|
Sets × reps | 4 × 5 | 2 × 10 |
Load | 70% of 1-RM | 70% of 1-RM 1 |
Rest period | 2 min | 3 min |
Movement velocity | >90% 1 | n/a |
Exercise order | Squat, Bench press, Hip thrust | Squat, Bench press, Hip thrust |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalmus, O.-E.; Viru, M.; Alvar, B.; Naclerio, F. Impact of Low Volume Velocity-Controlled vs. Repetition to Failure Resistance Training Session on Measures of Explosive Performance in a Team of Adolescents Basketball Players. Sports 2021, 9, 115. https://doi.org/10.3390/sports9080115
Kalmus O-E, Viru M, Alvar B, Naclerio F. Impact of Low Volume Velocity-Controlled vs. Repetition to Failure Resistance Training Session on Measures of Explosive Performance in a Team of Adolescents Basketball Players. Sports. 2021; 9(8):115. https://doi.org/10.3390/sports9080115
Chicago/Turabian StyleKalmus, Ott-Erik, Mehis Viru, Brent Alvar, and Fernando Naclerio. 2021. "Impact of Low Volume Velocity-Controlled vs. Repetition to Failure Resistance Training Session on Measures of Explosive Performance in a Team of Adolescents Basketball Players" Sports 9, no. 8: 115. https://doi.org/10.3390/sports9080115
APA StyleKalmus, O. -E., Viru, M., Alvar, B., & Naclerio, F. (2021). Impact of Low Volume Velocity-Controlled vs. Repetition to Failure Resistance Training Session on Measures of Explosive Performance in a Team of Adolescents Basketball Players. Sports, 9(8), 115. https://doi.org/10.3390/sports9080115