Social Dimensions in CPS & IoT Based Automated Production Systems
Abstract
:1. Introduction—Ground-Breaking Changes in Industry Worldwide
2. Fundamentals on CPS and IoT—An Insight
- (a)
- machine-machine interaction,
- (b)
- human-machine interaction and
- (c)
- human-human interaction.
3. Social Aspects in IoT and CPS
3.1. Social Interactions Based on Peer-to-Peer Communication Interfaces
3.2. Social-Network Services Based Approach as a Media for Social Interaction
3.3. Human-Inspired Social Relationships-Based Sociability Model: From Social Integration to System Integration
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acatech. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0—Final Report of the Industrie 4.0 Working Group; German Academy of Science and Engineering: Munich, Germany, 2013; Available online: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/ (accessed on 20 April 2021).
- Pfeiffer, S. The Vision of “Industrie 4.0” in the Making—A Case of Future Told, Tamed, and Traded. NanoEthics 2017, 11, 107–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WEF. The Future of Jobs. Employment, Skills and Workforce Strategy for the Fourth Industrial Revolution; World Economic Forum: Davos, Switzerland, 2016; Available online: http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf (accessed on 12 April 2021).
- WEF. The Future of Manufacturing: Driving Capabilities, Enabling Investment; World Economic Forum: Davos, Switzerland, 2015. [Google Scholar]
- Butollo, F.; Jürgens, U.; Krzywdzinski, M. From Lean Production to Industrie 4.0: More Autonomy for Employees? In Discussion Paper SP III 2018-303; WZB Berlin Social Science Center: Berlin, Germany, 2018. [Google Scholar]
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
- Autor, D.; Mindell, D.; Reynolds, E. The Work of the Future: Shaping Technology and Institutions. Fall 2019 Report. MIT Work of the Future. 2019. Available online: http://workofthefuture.mit.edu (accessed on 17 June 2021).
- Fukuyama, M. Society 5.0: Aiming for a New Human-Centered Society. Jpn. Spot. 2018, 1, 47–50. [Google Scholar]
- Waldenberger, F. Society 5.0—Japanese Ambition and Initiatives. In The Digital Future; (International Reports 1); Konrad Adenauer Stiftung (Hg.): Berlin, Germany, 2018; pp. 48–55. Available online: https://www.kas.de/en/web/auslandsinformationen/artikel/detail/-/content/society-5.0 (accessed on 17 June 2021).
- Deguchi, A.; Hirai, C.; Matsuoka, H.; Nakano, T.; Oshima, K.; Tai, M. What Is Society 5.0? In Society 5.0: A People-Centric Super-Smart Society; Springer: Singapore, 2020; pp. 1–23. [Google Scholar] [CrossRef]
- Bagheri, B.; Yang, S.; Kao, H.-A.; Lee, J. Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine 2015, 48, 1622–1627. [Google Scholar] [CrossRef]
- Guinard, D.; Fischer, M.; Trifa, V. Sharing using social networks in a composable Web of Things. In Proceedings of the 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Mannheim, Germany, 29 March–2 April 2010; pp. 702–707. [Google Scholar] [CrossRef]
- El-Haouzi, H.B.; Valette, E. Human System Integration as a Key Approach to Design Manufacturing Control System for Industry 4.0: Challenges, Barriers, and Opportunities. In Proceedings of the 17th IFAC Symposium on Information Control Problems in Manufacturing, Budapest, Hungary, 7–9 June 2021; Available online: https://incom2021.org/ (accessed on 6 August 2021).
- Arntz, M.; Gregory, T.; Zierahn, U. Revisiting the risk of automation. Econ. Lett. 2017, 159, 157–160. [Google Scholar] [CrossRef]
- Autor, D.H.; Levy, F.; Murnane, R.J. The Skill Content of Recent Technological Change: An Empirical Exploration. Q. J. Econ. 2003, 118, 1279–1333. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation—A critical review of the standards and envisioned scenarios. J. Manuf. Syst. 2020, 56, 312–325. [Google Scholar] [CrossRef]
- Zumbado, J.R. NASA Technical Reports Server (NTRS); Lyndon, B., Ed.; National Aeronautics and Space Administration (NASA), Johnson Space Center: Houston, TX, USA, 2015. Available online: https://ntrs.nasa.gov/citations/20150022283 (accessed on 20 May 2021).
- ISO 9241-210 Standard; International Standards Organization, 2019; Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/07/75/77520.html (accessed on 20 March 2021).
- Boy, G.A. Human-Systems Integration Design: From Virtual to Tangible. 2020. Available online: https://hal.archives-ouvertes.fr/hal-02424946 (accessed on 20 March 2021).
- Vanderhaegen, F. Pedagogical learning supports based on human–systems inclusion applied to rail flow control. Cogn. Technol. Work 2021, 23, 193–202. [Google Scholar] [CrossRef]
- Vanderhaegen, F.; Nelson, J.; Wolff, M.; Mollard, R. From Human-Systems Integration to Human-Systems Inclusion for use-centred inclusive manufacturing control systems. In Proceedings of the 17th IFAC Symposium on Information Control Problems in Manufacturing, Budapest, Hungary, 7–9 June 2021; Available online: https://ifac.papercept.net/conferences/scripts/rtf/INCOM21_ContentListWeb_1.html (accessed on 6 August 2021).
- Lockwood, D. Social Integration and System Integration. In Explorations in Social Change; Zollsch, G.K., Hirsch, H.W., Eds.; Routledge: London, UK, 1964. [Google Scholar]
- Majchrzak, A. The Human Side of Factory Automation; Jossey-Bass Pub.: San Francisco, CA, USA, 1988. [Google Scholar]
- Frey, C.B. The Technology Gap: Capital, Labor, and Power in the Age of Automation; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar]
- Bril El-Haouzi, H. Contribution à la Conception et à L’évaluation des Architectures de Pilotage des Systèmes de Production Adaptables: Vers une Approche Anthropocentrée Pour la Simulation et le Pilotage; Habilitation à diriger des recherches; Université de Lorraine: Nancy, France, 2017. [Google Scholar]
- Moniz, A.B.; Krings, B.-J. Robots Working with Humans or Humans Working with Robots? Searching for Social Dimensions in New Human-Robot Interaction in Industry. Societies 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Pirvu, B.-C.; Zamfirescu, C.-B.; Gorecky, D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics 2016, 34, 147–159. [Google Scholar] [CrossRef]
- Moniz, A.B. Intuitive Interaction Between Humans and Robots in Work Functions at Industrial Environments: The Role of Social Robotics. In Social Robots from a Human Perspective; Vincent, J., Taipale, S., Sapio, B., Lugano, G., Fortunati, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 67–76. [Google Scholar] [CrossRef]
- Moniz, A.B. Organisational Challenges of Human–Robot Interaction Systems in Industry: Human Resources Implications. In Human Resource Management and Technological Challenges; Machado, C., Davim, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 123–131. [Google Scholar] [CrossRef]
- Romero, D.; Wuest, T.; Stahre, J.; Gorecky, D. Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0. IFIP Adv. Inf. Commun. Technol. 2017, 513, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef] [Green Version]
- Valette, E.; El-Haouzi, H.B.; Demesure, G. L’humain dans les paradigms de production basés sur les IoT et CPS: État des lieux et perspectives. In Proceedings of the 13ème Conférence Francophone de Modélisation, Optimisation et Simulation—MOSIM’20, Agadir, Morocco, 12–14 November 2020; Available online: https://hal.archives-ouvertes.fr/hal-03025467/document (accessed on 5 August 2021).
- Sycara, K.P. The Many Faces of Agents. AI Mag. 1998, 19, 11. [Google Scholar] [CrossRef]
- Schirner, G.; Erdogmus, D.; Chowdhury, K.; Padir, T. The Future of Human-in-the-Loop Cyber-Physical Systems. Computer 2013, 46, 36–45. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber-Physical Systems—Are Computing Foundations Adequate? In NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap; National Science Foundation: Austin, TX, USA, 2006; p. 10. [Google Scholar]
- Gries, T.; Naudé, W. The Race of Man and Machine: Implications of Technology When Abilities and Demand Constraints Matter. IZA Discussion Paper Nr. 14341. 2021. Available online: https://www.iza.org/en/publications/dp/14341/the-race-of-man-and-machine-implications-of-technology-when-abilities-and-demand-constraints-matter (accessed on 4 August 2021).
- Ashton, K. That “Internet of Things” Thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Bordel, B.; Alcarria, R.; Robles, T.; Martín, D. Cyber–physical systems: Extending pervasive sensing from control theory to the Internet of Things. Pervasive Mob. Comput. 2017, 40, 156–184. [Google Scholar] [CrossRef]
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Monostori, L. Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP 2014, 17, 9–13. [Google Scholar] [CrossRef]
- Bao, X.; Liang, H.; Han, L. Transmission Optimization of Social and Physical Sensor Nodes via Collaborative Beamforming in Cyber-Physical-Social Systems. Sensors 2018, 18, 4300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Liu, C.; Wang, K.I.-K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Katarzyniak, R.P. Actions and social interactions in multi-agent systems. Knowl. Inf. Syst 2008, 18, 133–136. [Google Scholar] [CrossRef]
- Sowe, S.K.; Simmon, E.; Zettsu, K.; De Vaulx, F.; Bojanova, I. Cyber-Physical-Human Systems: Putting People in the Loop. IT Prof. 2016, 18, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Cimini, C.; Pirola, F.; Pinto, R.; Cavalieri, S. A human-in-the-loop manufacturing control architecture for the next generation of production systems. J. Manuf. Syst. 2020, 54, 258–271. [Google Scholar] [CrossRef]
- Efkolidis, N.; Garcia-Hernandez, C.; Huertas-Talon, J.L.; Kyratsis, P. Promote sustainability through product design by involving the user. Environ. Eng. Manag. J. 2019, 18, 1885–1896. [Google Scholar] [CrossRef]
- Wang, X.V.; Wang, L. Augmented Reality Enabled Human–Robot Collaboration. In Advanced Human-Robot Collaboration in Manufacturing; Wang, L., Wang, X.V., Váncza, J., Kemény, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 395–411. Available online: https://link.springer.com/chapter/10.1007/978-3-030-69178-3_16 (accessed on 6 August 2021).
- Baroroh, D.K.; Chu, C.-H.; Wang, L. Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence. J. Manuf. Syst. 2020, in press. [Google Scholar] [CrossRef]
- Internet World Stats. The Global Village Online. 2020. Available online: https://www.internetworldstats.com/emarketing.htm (accessed on 20 April 2021).
- Alam, T. A Reliable Communication Framework and its Use in Internet of Things (Iot). SSRN Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2018, 3, 450–456. Available online: https://ssrn.com/abstract=3619450 (accessed on 12 March 2021).
- Boyd, D.M.; Ellison, N. Social Network Sites: Definition, History, and Scholarship. J. Comput. Commun. 2007, 13, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Pujol, J.M.; Sangüesa, R.; Delgado, J. Extracting reputation in multi agent systems by means of social network topology. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’02, New York, NY, USA, 15 July 2002; Association for Computing Machinery, Part 1,2. pp. 467–474. Available online: https://dl.acm.org/doi/10.1145/544741.544853 (accessed on 6 August 2021).
- Zhukova, N.; Thaw, A.M.; Tianxing, M.; Nikolay, M. IoT Data Collection Based on Social Network Models. In Proceedings of the 2020 26th Conference of Open Innovations Association (FRUCT), Yaroslavl, Russia, 23–24 April 2020; pp. 458–463. Available online: https://www.fruct.org/sites/default/files/files/FRUCT26_Program.pdf (accessed on 6 August 2021). [CrossRef]
- Mourtzis, D.; Xanthi, F.; Chariatidis, K.; Zogopoulos, V. Enabling Knowledge Transfer through Analytics in Industrial Social Networks. Procedia CIRP 2019, 81, 1242–1247. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, K.; Leng, J. Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing. Manuf. Lett. 2016, 7, 15–21. [Google Scholar] [CrossRef]
- Mori, M. The Uncanny Valley. Energy 1970, 7, 33–35. Available online: https://spectrum.ieee.org/the-uncanny-valley (accessed on 6 August 2021).
- Wang, F.-Y. The Emergence of Intelligent Enterprises: From CPS to CPSS. IEEE Intell. Syst. 2010, 25, 85–88. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.-S.; Wen, D.; Zhang, W.-M.; Mao, W. Cyber-Physical-Social Systems for Command and Control. IEEE Intell. Syst. 2011, 26, 92–96. [Google Scholar] [CrossRef]
- Shi, X.; Zhuge, H. Cyber Physical Socio Ecology. Concurr. Comput. Pr. Exp. 2010, 23, 972–984. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. SIoT: Giving a Social Structure to the Internet of Things. IEEE Commun. Lett. 2011, 15, 1193–1195. [Google Scholar] [CrossRef]
- Guinard, D. A Web of Things Application Architecture—Integrating the Real-World into the Web. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2011. Available online: https://www.vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf (accessed on 4 August 2021).
- Mala, D.J. (Ed.) Integrating the Internet of Things Into Software Engineering Practices; IGI Global: Hershey, PA, USA, 2019; Available online: https://www.igi-global.com/book/integrating-internet-things-into-software/210211 (accessed on 6 August 2021). [CrossRef]
- Fiske, A.P. The four elementary forms of sociality: Framework for a unified theory of social relations. Psychol. Rev. 1992, 99, 689–723. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G.; Nitti, M. The Social Internet of Things (SIoT)—When social networks meet the Internet of Things: Concept, architecture and network characterization. Comput. Netw. 2012, 56, 3594–3608. [Google Scholar] [CrossRef]
- Valette, E.; Demesure, G.; El-Haouzi, H.B.; Pannequin, R. Formal and modelling frameworks for Social Holonic Control Architectures. Comput. Ind. 2021, 132, 103521. [Google Scholar] [CrossRef]
- Tsarouchi, P.; Matthaiakis, A.-S.; Makris, S.; Chryssolouris, G. On a human-robot collaboration in an assembly cell. Int. J. Comput. Integr. Manuf. 2016, 30, 580–589. [Google Scholar] [CrossRef] [Green Version]
- El Mouayni, I.; Etienne, A.; Siadat, A.; Dantan, J.-Y.; Lux, A. A simulation based approach for enhancing health aspects in production systems by integrating work margins. IFAC-PapersOnLine 2016, 49, 1697–1702. [Google Scholar] [CrossRef]
- Pintus, A.; Carboni, D.; Serra, A.; Manchinu, A. Humanizing the Internet of Things—Toward a Human-centered Internet-and-web of Things. In Proceedings of the 11th International Conference on Web Information Systems and Technologies (20–22 May 2015); SCITEPRESS—Science and Technology Publications: Lisbon, Portugal, 2015; pp. 498–503. Available online: http://www.webist.org/?y=2015 (accessed on 6 August 2021).
- Kassner, L.; Hirmer, P.; Wieland, M.; Steimle, F.; Königsberger, J.; Mitschang, B. The Social Factory: Connecting People, Machines and Data in Manufacturing for Context Aware Exception Escalation. In Proceedings of the 50th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 4–7 January 2017; Available online: https://aisel.aisnet.org/hicss-50/ (accessed on 6 August 2021).
- Krüger, J.; Lien, T.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Haouzi, H.B.; Valette, E.; Krings, B.-J.; Moniz, A.B. Social Dimensions in CPS & IoT Based Automated Production Systems. Societies 2021, 11, 98. https://doi.org/10.3390/soc11030098
El-Haouzi HB, Valette E, Krings B-J, Moniz AB. Social Dimensions in CPS & IoT Based Automated Production Systems. Societies. 2021; 11(3):98. https://doi.org/10.3390/soc11030098
Chicago/Turabian StyleEl-Haouzi, Hind Bril, Etienne Valette, Bettina-Johanna Krings, and António Brandão Moniz. 2021. "Social Dimensions in CPS & IoT Based Automated Production Systems" Societies 11, no. 3: 98. https://doi.org/10.3390/soc11030098
APA StyleEl-Haouzi, H. B., Valette, E., Krings, B. -J., & Moniz, A. B. (2021). Social Dimensions in CPS & IoT Based Automated Production Systems. Societies, 11(3), 98. https://doi.org/10.3390/soc11030098