Information, Entanglement, and Emergent Social Norms: Searching for ‘Normal’
Abstract
:1. Introduction
2. Open Questions in Social Norms Research
2.1. Where Do Social Norms Come From?
2.2. What Is the Evolutionary Function of Social Norms?
2.3. How Are Social Norms Learned?
2.4. How Do Norms Relate to Behavior?
3. Searching for “Normal”
3.1. Intuitions on Norms, Belief, and Information
3.2. Information, Social Norms, and Evolution
3.3. Mitigating Uncertainty in the Social Environment
4. Balancing Risk against Innovation
4.1. Optimality in a Social Environment
4.2. Costs of Social Learning with Collective and Social Cognition
5. The Dynamics of Social Information Norms
5.1. Information and the Environment
5.2. Search and Social Coordination
5.3. Entanglement and Collective Optimization
5.4. Emergence and Stabilization of Norms
5.5. Establishing “Normal”—Convergence of Normative Expectations
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | Rogers’ Paradox [111] is a form of free-rider problem particular to evolution and social learning. Under certain circumstances social learning may lead to the retention of a maladaptive trait or behavior, thereby lowering the overall mean fitness of the population. This occurs when the environment is changing, but there are insufficient individual (or asocial) learners in the population to produce innovative solutions. |
2 | Bayesian models of cognition suggest that the brain is a probabilistic inference machine, constantly making predictions and updating beliefs based on incoming sensory information. These theories posit that neural processes integrate prior knowledge with sensory data to form perceptions and guide behavior, emphasizing the brain’s role in minimizing prediction errors (see [113,114,115,116]). |
3 | Shannon [168] defined the concepts of information and entropy to quantify the uncertainty or surprise within a system. High-surprise environments contain a greater degree of unpredictability, meaning each new observation provides substantial information. Conversely, low-surprise environments are more predictable so new observations add little information. |
4 | A multi-objective optimization is one in which there is more than one competing or conflicting attributes or criteria for the desired outcome. In such cases, there may be multiple equally optimal solutions representing specific trade-offs between those competing criteria. A Pareto optimization is a particular approach to solving these problems, stipulating that a solution is efficient or optimal if it improves the objective value of one or more criteria without worsening any other criteria. |
5 | More precisely, coordination could be represented by the convolution of mental representations (in the mathematical sense of the interactions between functions), if modeled as probability or generative functions, to identify the degree of overlap between them. |
6 | We are using the term “dominant” here in the sense of a multi-objective optimization problem such as Pareto optimization. A dominant solution refers to a solution that is superior to another solution in at least one objective and not inferior in any other objective. A solution that is not dominated by any other solution in the problem space is called a “non-dominated” or “Pareto optimal” solution [65,171]. |
7 | In the previous sections, we have been using the term community in the vernacular or sociological sense—i.e., a group of people who share common interests, values, norms, and often geographical location, and who interact with each other on a regular basis. In the following text, however, we are using the term in its more technical definition, formalized within social network analysis, to denote a subgroup or cluster of individuals within a larger network who are more densely connected to each other than to individuals outside of the group. These communities are often identified based on patterns of interactions or relationships among nodes (individuals or entities) in the network. |
8 | We are using "information landscape" slightly outside of its contemporary common usage (i.e., the range and contexts of information sources). Here, we use the term to denote something between a formal information topology (in the mathematical sense, see [210]) and a fitness landscape (in the evolutionary biology sense, [211]). |
9 | A system without uncertainty would be a wholly deterministic system, for which properties such as emergence or self-organization would be moot [229]. |
10 | Note that we are using local and global with respect to the system or network as a whole. In this particular context, local would refer to a community whereas global refers to the larger population of which that community is a part. |
References
- Wallen, K.E.; Romulo, C.L. Social norms: More details, please. Proc. Natl. Acad. Sci. USA 2017, 114, E5283–E5284. [Google Scholar] [CrossRef] [PubMed]
- Fehr, E.; Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2018, 2, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Legros, S.; Cislaghi, B. Mapping the social-norms literature: An overview of reviews. Perspect. Psychol. Sci. 2020, 15, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Loughmiller-Cardinal, J.A.; Cardinal, J.S. The behavior of information: A reconsideration of social norms. Societies 2023, 13, 111. [Google Scholar] [CrossRef]
- Gelfand, M.J.; Gavrilets, S.; Nunn, N. Norm dynamics: Interdisciplinary perspectives on social norm emergence, persistence, and change. Annu. Rev. Psychol. 2024, 75, 341–378. [Google Scholar] [CrossRef]
- Searle, J.R. The Construction of Social Reality; Free Press: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Tomasello, M.; Rakoczy, H. What makes human cognition unique? From individual to shared to collective intentionality. Mind Lang. 2003, 18, 121–147. [Google Scholar] [CrossRef]
- Fehr, E.; Fischbacher, U. Social norms and human cooperation. Trends Cogn. Sci. 2004, 8, 185–190. [Google Scholar] [CrossRef]
- Bicchieri, C. The Grammar of Society: The Nature and Dynamics of Social Norms; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Fricker, E. Second-hand knowledge. Philos. Phenomenol. Res. 2006, 73, 595–618. [Google Scholar] [CrossRef]
- Roth, P.A. What would it be to be a norm. In Normativity and Naturalism in the Philosophy of the Social Sciences; Risjord, M., Ed.; Routledge: New York, NY, USA; London, UK, 2016; Chapter 4; pp. 43–59. [Google Scholar] [CrossRef]
- Bicchieri, C. Norms, conventions and the power of expectations. In Philosophy of Social Science: A New Introduction; Cartwright, N., Montuschi, E., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 208–229. [Google Scholar]
- Shulman, H.C.; Rhodes, N.; Davidson, E.; Ralston, R.; Borghetti, L.; Morr, L. The state of the field of social norms research. Int. J. Commun. 2017, 11, 1192–1213. [Google Scholar]
- Prentice, D.A. Intervening to change social norms: When does it work? Soc. Res. Int. Q. 2018, 85, 115–139. [Google Scholar] [CrossRef]
- Hoeft, L. The force of norms? The internal point of view in light of experimental economics. Ratio Juris 2019, 32, 339–362. [Google Scholar] [CrossRef]
- Prentice, D.; Paluck, E.L. Engineering social change using social norms: Lessons from the study of collective action. Curr. Opin. Psychol. 2020, 35, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Andrighetto, G.; Vriens, E. A research agenda for the study of social norm change. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2022, 380, 0411. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J. Social practices and normativity. Philos. Soc. Sci. 2007, 37, 46–56. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions About Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA, 2009. [Google Scholar]
- Geiger, N. The rise of behavioral economics: A quantitative assessment. Soc. Sci. Hist. 2017, 41, 555–583. [Google Scholar] [CrossRef]
- Mumford, E. The story of socio-technical design: Reflections on its successes, failures and potential. Inf. Syst. J. 2006, 16, 317–342. [Google Scholar] [CrossRef]
- Baxter, G.; Sommerville, I. Socio-technical systems: From design methods to systems engineering. Interact. Comput. 2011, 23, 4–17. [Google Scholar] [CrossRef]
- Darwiche, A.; Pearl, J. On the logic of iterated belief revision. Artif. Intell. 1997, 89, 1–29. [Google Scholar] [CrossRef]
- Wang, P. On defining artificial intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [Google Scholar] [CrossRef]
- Coeckelbergh, M. Artificial intelligence, responsibility attribution, and a relational justification of explainability. Sci. Eng. Ethics 2020, 26, 2051–2068. [Google Scholar] [CrossRef]
- Grossi, D.; Tummolini, L.; Turrini, P. Norms in game theory. In Agreement Technologies; Ossowski, S., Ed.; Law, Governance and Technology Series; Springer: Dordrecht, The Netherlands, 2013; Volume 8, pp. 191–197. [Google Scholar] [CrossRef]
- Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castañeda, A.G.; Beattie, C.; Rabinowitz, N.C.; Morcos, A.S.; Ruderman, A.; et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 2019, 364, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The ethics of algorithms: Mapping the debate. Big Data Soc. 2016, 3, 205395171667967. [Google Scholar] [CrossRef]
- Freiman, O. Making sense of the conceptual nonsense “trustworthy AI”. AI Ethics 2022, 3, 1351–1360. [Google Scholar] [CrossRef]
- van Maanen, G. Ai ethics, ethics washing, and the need to politicize data ethics. Digit. Soc. 2022, 1, 9. [Google Scholar] [CrossRef]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the dangers of stochastic parrots. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Online, 3–10 March 2021; ACM: New York, NY, USA, 2021; pp. 610–623. [Google Scholar] [CrossRef]
- Hutson, M. Robo-writers: The rise and risks of language-generating AI. Nature 2021, 591, 22–25. [Google Scholar] [CrossRef]
- Dimant, E.; van Kleef, G.A.; Shalvi, S. Requiem for a nudge: Framing effects in nudging honesty. J. Econ. Behav. Organ. 2020, 172, 247–266. [Google Scholar] [CrossRef]
- Richter, I.; Thøgersen, J.; Klöckner, C. A social norms intervention going wrong: Boomerang effects from descriptive norms information. Sustainability 2018, 10, 2848. [Google Scholar] [CrossRef]
- Vicario, M.D.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef]
- Gallo, J.A.; Cho, C.Y. Social Media: Misinformation and Content Moderation Issues for Congress; Resreport R46662; Prepared for Members and Committees of Congress; Congressional Research Service: Washington, DC, USA, 2021. [Google Scholar]
- Bicchieri, C. Norms, preferences, and conditional behavior. Politics Philos. Econ. 2010, 9, 297–313. [Google Scholar] [CrossRef]
- Sripada, C.S.; Stich, S. A framework for the psychology of norms. In The Innate Mind: Culture and Cognition; Carruthers, P., Laurence, S., Stich, S., Eds.; Oxford University Press: Oxford, UK, 2007; Volume 2, Chapter 17; pp. 280–301. [Google Scholar] [CrossRef]
- Hardy-Vallée, B.; Dubreuil, B. Folk epistemology as normative social cognition. Rev. Philos. Psychol. 2009, 1, 483–498. [Google Scholar] [CrossRef]
- Malle, B.F. The social and moral cognition of group agents. J. Law Policy 2010, 20, 95–136. [Google Scholar]
- Clément, F.; Bernard, S.; Kaufmann, L. Social cognition is not reducible to theory of mind: When children use deontic rules to predict the behaviour of others. Br. J. Dev. Psychol. 2011, 29, 910–928. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, A.; Kirchhoff, M.D. Enactive social cognition: Diachronic constitution & coupled anticipation. Conscious. Cogn. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Huang, P.H.; Wu, H.M. More order without more law: A theory of social norms and organizational cultures. J. Law Econ. Organ. 1994, 10, 390–406. [Google Scholar]
- Fowler, J.H.; Christakis, N.A. Cooperative behavior cascades in human social networks. Proc. Natl. Acad. Sci. USA 2010, 107, 5334–5338. [Google Scholar] [CrossRef]
- Jensen, K.; Vaish, A.; Schmidt, M.F.H. The emergence of human prosociality: Aligning with others through feelings, concerns, and norms. Front. Psychol. 2014, 5, 822. [Google Scholar] [CrossRef]
- Pryor, C.; Perfors, A.; Howe, P.D.L. Conformity to the descriptive norms of people with opposing political or social beliefs. PLoS ONE 2019, 14, e0219464. [Google Scholar] [CrossRef]
- Bicchieri, C.; Dimant, E. Nudging with care: The risks and benefits of social information. Public Choice 2022, 191, 443–464. [Google Scholar] [CrossRef]
- Masur, P.K.; DiFranzo, D.; Bazarova, N.N. Behavioral contagion on social media: Effects of social norms, design interventions, and critical media literacy on self-disclosure. PLoS ONE 2021, 16, e0254670. [Google Scholar] [CrossRef]
- Vanderschraaf, P. Convention as correlated equilibrium. Erkenntnis 1995, 42, 65–87. [Google Scholar] [CrossRef]
- Gintis, H. The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences, Revised ed.; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Young, H.P. The evolution of social norms. Annu. Rev. Econ. 2015, 7, 359–387. [Google Scholar] [CrossRef]
- Aumann, R.J. What is game theory trying to accomplish? In Frontiers of Economics; Basil Blackwell: Oxford, UK, 1985; pp. 28–76. [Google Scholar]
- Paternotte, C.; Grose, J. Social norms and game theory: Harmony or discord? Br. J. Philos. Sci. 2013, 64, 551–587. [Google Scholar] [CrossRef]
- Bicchieri, C. Norms in the Wild: How to Diagnose, Measure, and Change Social Norms; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Bicchieri, C.; Dimant, E.; Gelfand, M.; Sonderegger, S. Social norms and behavior change: The interdisciplinary research frontier. J. Econ. Behav. Organ. 2023, 205, A4–A7. [Google Scholar] [CrossRef]
- Gintis, H. The hitchhiker’s guide to altruism: Gene-culture coevolution, and the internalization of norms. J. Theor. Biol. 2003, 220, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Sterelny, K. Social intelligence, human intelligence and niche construction. Philos. Trans. R. Soc. London. Ser. Biol. Sci. 2007, 362, 719–730. [Google Scholar] [CrossRef]
- André, J.B.; Baumard, N. Social opportunities and the evolution of fairness. J. Theor. Biol. 2011, 289, 128–135. [Google Scholar] [CrossRef]
- Kurzban, R.; Burton-Chellew, M.N.; West, S.A. The evolution of altruism in humans. Annu. Rev. Psychol. 2015, 66, 575–599. [Google Scholar] [CrossRef]
- Gavrilets, S.; Richerson, P.J. Collective action and the evolution of social norm internalization. Proc. Natl. Acad. Sci. USA 2017, 114, 6068–6073. [Google Scholar] [CrossRef]
- Fabry, R.E. Betwixt and between: The enculturated predictive processing approach to cognition. Synthese 2018, 195, 2483–2518. [Google Scholar] [CrossRef]
- Fabry, R.E. Limiting the explanatory scope of extended active inference: The implications of a causal pattern analysis of selective niche construction, developmental niche construction, and organism-niche coordination dynamics. Biol. Philos. 2021, 36, 6. [Google Scholar] [CrossRef]
- Mesoudi, A. Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution. Proc. Natl. Acad. Sci. USA 2017, 114, 7853–7860. [Google Scholar] [CrossRef] [PubMed]
- Burtsev, M.; Turchin, P. Evolution of cooperative strategies from first principles. Nature 2006, 440, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Johansson, A. Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach. PLoS ONE 2010, 5, e12530. [Google Scholar] [CrossRef] [PubMed]
- Roca, C.P.; Helbing, D. Emergence of social cohesion in a model society of greedy, mobile individuals. Proc. Natl. Acad. Sci. USA 2011, 108, 11370–11374. [Google Scholar] [CrossRef]
- Gintis, H.; Doebeli, M.; Flack, J. The evolution of human cooperation. Cliodynamics 2012, 3, 172–190. [Google Scholar] [CrossRef]
- Mesoudi, A. Cultural evolution: A review of theory, findings and controversies. Evol. Biol. 2015, 43, 481–497. [Google Scholar] [CrossRef]
- Fehr, E.; Fischbacher, U.; Gächter, S. Strong reciprocity, human cooperation, and the enforcement of social norms. Hum. Nat. 2002, 13, 1–25. [Google Scholar] [CrossRef]
- Baldassarri, D.; Grossman, G. Centralized sanctioning and legitimate authority promote cooperation in humans. Proc. Natl. Acad. Sci. USA 2011, 108, 11023–11027. [Google Scholar] [CrossRef]
- Reuben, E.; Riedl, A. Enforcement of contribution norms in public good games with heterogeneous populations. Games Econ. Behav. 2013, 77, 122–137. [Google Scholar] [CrossRef]
- Abbink, K.; Gangadharan, L.; Handfield, T.; Thrasher, J. Peer punishment promotes enforcement of bad social norms. Nat. Commun. 2017, 8, 609. [Google Scholar] [CrossRef]
- Gontier, N.; Sukhoverkhov, A. Reticulate evolution underlies synergistic trait formation in human communities. Evol. Anthropol. Issues News Rev. 2022, 32, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.S.; Madhavan, G.; Gelfand, M.J.; Hayes, S.C.; Atkins, P.W.B.; Colwell, R.R. Multilevel cultural evolution: From new theory to practical applications. Proc. Natl. Acad. Sci. USA 2023, 120, e2218222120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Dong, Y.; He, W.; Yao, S.; Xu, Z.; Mu, Y. How we learn social norms: A three-stage model for social norm learning. Front. Psychol. 2023, 14, 1153809. [Google Scholar] [CrossRef] [PubMed]
- Henrich, J. The evolution of costly displays, cooperation and religion. credibility enhancing displays and their implications for cultural evolution. Evol. Hum. Behav. 2009, 30, 244–260. [Google Scholar] [CrossRef]
- Brewer, J.; Gelfand, M.; Jackson, J.C.; Macdonald, I.F.; Peregrine, P.N.; Richerson, P.J.; Turchin, P.; Whitehouse, H.; Wilson, D.S. Grand challenges for the study of cultural evolution. Nat. Ecol. Evol. 2017, 1, 0070. [Google Scholar] [CrossRef]
- Turchin, P.; Currie, T.E.; Whitehouse, H.; François, P.; Feeney, K.; Mullins, D.; Hoyer, D.; Collins, C.; Grohmann, S.; Savage, P.; et al. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proc. Natl. Acad. Sci. USA 2018, 115, E144–E151. [Google Scholar] [CrossRef]
- Turchin, P.; Witoszek, N.; Thurner, S.; Garcia, D.; Griffin, R.; Hoyer, D.; Midttun, A.; Bennett, J.; Næss, K.M.; Gavrilets, S.; et al. A History of Possible Futures: Multipath Forecasting of Social Breakdown, Recovery, and Resilience. Cliodynamics J. Quant. Hist. Cult. Evol. 2019, 9, 124–139. [Google Scholar] [CrossRef]
- Read, D.W. Change in the form of evolution: Transition from primate to hominid forms of social organization. J. Math. Sociol. 2005, 29, 91–114. [Google Scholar] [CrossRef]
- West, S.A.; Griffin, A.S.; Gardner, A. Social semantics: How useful has group selection been? J. Evol. Biol. 2008, 21, 374–385. [Google Scholar] [CrossRef]
- West, S.A.; El Mouden, C.; Gardner, A. Sixteen common misconceptions about the evolution of cooperation in humans. Evol. Hum. Behav. 2011, 32, 231–262. [Google Scholar] [CrossRef]
- Mirski, R.; Bickhard, M.H.; Eck, D.; Gut, A. Encultured minds, not error reduction minds. Behav. Brain Sci. 2020, 43, e109. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Levin, S.A. The evolution of norms. PLoS Biol. 2005, 3, e194. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.; Sterelny, K. Evolutionary approaches to human behavior: Philosophical aspects. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 399–405. [Google Scholar] [CrossRef]
- Turner, S.P. Social Theory as a Cognitive Neuroscience. Eur. J. Soc. Theory 2007, 10, 357–374. [Google Scholar] [CrossRef]
- Koditschek, T. An evolutionary approach to complex hierarchical societies. Behav. Process. 2019, 161, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R. The Selfish Gene; Oxford University Press: Oxford, UK, 1976; p. 352. [Google Scholar]
- Henrich, J.; McElreath, R. The evolution of cultural evolution. Evol. Anthropol. Issues News Rev. 2003, 12, 123–135. [Google Scholar] [CrossRef]
- Wilson, E.O. Sociobiology: The New Synthesis, 2nd Printing, 25th Anniversary ed.; Harvard University Press: Cambridge, MA, USA, 1975; pp. 599–663. [Google Scholar]
- Lewontin, R.C. Sociobiology as an adaptationist program. Behav. Sci. 1979, 24, 5–14. [Google Scholar] [CrossRef]
- Skinner, B.F. Selection by consequences. Science 1981, 213, 501–504. [Google Scholar] [CrossRef]
- Skinner, B.F. The evolution of behavior. J. Exp. Anal. Behav. 1984, 41, 217–221. [Google Scholar] [CrossRef]
- Searle, J.R. Sociobiology and the explanation of behavior. In Sociobiology and Human Nature, 2nd ed.; Gregory, M.S., Silvers, A., Sutch, D., Eds.; Jossey-Bass: San Francisco, CA, USA, 1978; p. 164. [Google Scholar]
- Feldman, M.W.; Cavalli-Sforza, L.L. Cultural and biological evolutionary processes, selection for a trait under complex transmission. Theor. Popul. Biol. 1976, 9, 238–259. [Google Scholar] [CrossRef]
- Boyd, R.; Richerson, P.J. Culture and the Evolutionary Process; University of Chicago Press: Chicago, IL, USA, 1985. [Google Scholar]
- Durham, W.H. Coevolution: Genes, Culture, and Human Diversity; Stanford University Press: Stanford, CA, USA, 1991. [Google Scholar]
- Steward, J.H. Theory of Culture Change: The Methodology of Multilinear Evolution; University of Illinois Press: Champaign, IL, USA, 1955; p. 244. [Google Scholar]
- White, L.A. The Evolution of Culture: The Development of Civilization to the Fall of Rome; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Boyd, R.; Richerson, P.J. The evolution of norms: An anthropological view. J. Inst. Theor. Econ. 1994, 150, 72–87. [Google Scholar]
- Boyd, R.; Richerson, P.J. Gene-culture coevolution and the evolution of social institutions. In Better than Conscious? Decision Making, the Human Mind, and Implications for Institutions; Engel, C., Singer, W., Eds.; The MIT Press: Cambridge, MA, USA, 2008; pp. 305–324. [Google Scholar] [CrossRef]
- Rendell, L.; Fogarty, L.; Hoppitt, W.J.E.E.; Morgan, T.J.H.H.; Webster, M.M.; Laland, K.N. Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 2011, 15, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kendal, R.L.; Boogert, N.J.; Rendell, L.; Laland, K.N.; Webster, M.; Jones, P.L. Social learning strategies: Bridge-building between fields. Trends Cogn. Sci. 2018, 22, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Heyes, C. Blackboxing: Social learning strategies and cultural evolution. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150369. [Google Scholar] [CrossRef]
- Laland, K.N. Social learning strategies. Anim. Learn. Behav. 2004, 32, 4–14. [Google Scholar] [CrossRef]
- Heyes, C. What’s social about social learning? J. Comp. Psychol. 2012, 126, 193–202. [Google Scholar] [CrossRef]
- Morgan, T.J.H.; Rendell, L.E.; Ehn, M.; Hoppitt, W.; Laland, K.N. The evolutionary basis of human social learning. Proc. R. Soc. Biol. Sci. 2012, 279, 653–662. [Google Scholar] [CrossRef]
- Enquist, M.; Eriksson, K.; Ghirlanda, S. Critical Social Learning: A Solution to Rogers’s Paradox of Nonadaptive Culture. Am. Anthropol. 2007, 109, 727–734. [Google Scholar] [CrossRef]
- Rendell, L.; Fogarty, L.; Laland, K.N. Rogers’ paradox recast and resolved: Population structure and the evolution of social learning strategies. Evolution 2010, 64, 534–548. [Google Scholar] [CrossRef]
- Kharratzadeh, M.; Montrey, M.; Metz, A.; Shultz, T.R. Specialized hybrid learners resolve Rogers’ paradox about the adaptive value of social learning. J. Theor. Biol. 2017, 414, 8–16. [Google Scholar] [CrossRef]
- Rogers, A.R. Does Biology Constrain Culture? Am. Anthropol. 1988, 90, 819–831. [Google Scholar] [CrossRef]
- Woike, J.K.; Hertwig, R.; Gigerenzer, G. Heterogeneity of rules in Bayesian reasoning: A toolbox analysis. Cogn. Psychol. 2023, 143, 101564. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. The history of the future of the Bayesian brain. Neuroimage 2012, 62, 1230–1233. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, A.N.; Chater, N. Bayesian Brains without Probabilities. Trends Cogn. Sci. 2016, 20, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Bain, R. Are our brains Bayesian? Significance 2016, 13, 14–19. [Google Scholar] [CrossRef]
- Block, N. If perception is probabilistic, why does it not seem probabilistic? Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170341. [Google Scholar] [CrossRef]
- Jones, M. Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav. Brain Sci. 2010, 5935, 1–57. [Google Scholar] [CrossRef]
- Jacobs, R.A.; Kruschke, J.K. Bayesian learning theory applied to human cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 2, 8–21. [Google Scholar] [CrossRef]
- van Dijk, L.; Withagen, R.; Bongers, R.M. Information without content: A Gibsonian reply to enactivists’ worries. Cognition 2015, 134, 210–214. [Google Scholar] [CrossRef]
- Chater, N.; Felin, T.; Funder, D.C.; Gigerenzer, G.; Koenderink, J.J.; Krueger, J.I.; Noble, D.; Nordli, S.A.; Oaksford, M.; Schwartz, B.; et al. Mind, rationality, and cognition: An interdisciplinary debate. Psychon. Bull. Rev. 2018, 25, 793–826. [Google Scholar] [CrossRef]
- Zahavi, D. Brain, mind, world: Predictive coding, neo-Kantianism, and transcendental idealism. Husserl. Stud. 2018, 34, 47–61. [Google Scholar] [CrossRef]
- Badcock, P.B.; Friston, K.J.; Ramstead, M.J.D.; Ploeger, A.; Hohwy, J. The hierarchically mechanistic mind: An evolutionary systems theory of the human brain, cognition, and behavior. Cogn. Affect. Behav. Neurosci. 2019, 19, 1319–1351. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Stephan, K.E. Free-energy and the brain. Synthese 2007, 159, 417–458. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. Predictive coding and thought. Synthese 2020, 197, 1749–1775. [Google Scholar] [CrossRef]
- Friston, K.J. Learning and inference in the brain. Neural Netw. 2003, 16, 1325–1352. [Google Scholar] [CrossRef]
- Chater, N.; Tenenbaum, J.B.; Yuille, A. Probabilistic models of cognition: Conceptual foundations. Trends Cogn. Sci. 2006, 10, 287–291. [Google Scholar] [CrossRef]
- Brighton, H.; Gigerenzer, G. Bayesian brains and cognitive mechanisms: Harmony or dissonance. In The Probabilistic Mind: Prospects for Bayesian Cognitive Science; Chater, N., Oaksford, M., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 189–208. [Google Scholar]
- Otten, M.; Seth, A.K.; Pinto, Y. A social Bayesian brain: How social knowledge can shape visual perception. Brain Cogn. 2017, 112, 69–77. [Google Scholar] [CrossRef]
- Clark, A. How to knit your own Markov blanket: Resisting the second law with metamorphic minds. In Philosophy and Predictive Processing; Metzinger, T.K., Wiese, W., Eds.; MIND Group: Frankfurt am Main, Germany, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Harkness, D.L.; Keshava, A. Moving from the what to the how and where—Bayesian models and predictive processing. In Philosophy and Predictive Processing; Metzinger, T.K., Wiese, W., Eds.; MIND Group: Frankfurt am Main, Germany, 2017; pp. 254–263. [Google Scholar] [CrossRef]
- Gallagher, S.; Allen, M. Active inference, enactivism and the hermeneutics of social cognition. Synthese 2018, 195, 2627–2648. [Google Scholar] [CrossRef]
- Constant, A.; Clark, A.; Kirchhoff, M.; Friston, K.J. Extended active inference: Constructing predictive cognition beyond skulls. Mind Lang. 2020, 37, 373–394. [Google Scholar] [CrossRef]
- Friston, K.J. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef]
- Hoffrage, U.; Krauss, S.; Martignon, L.; Gigerenzer, G. Natural frequencies improve Bayesian reasoning in simple and complex inference tasks. Front. Psychol. 2015, 6, 01473. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R.; Gupta, P.; Taylor, J. An active inference model of collective intelligence. Entropy 2021, 23, 830. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.S.; Davis, C.J. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 2012, 138, 389–414. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Wright, C. Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain Cogn. 2017, 112, 3–12. [Google Scholar] [CrossRef]
- Andrews, M. The math is not the territory: Navigating the free energy principle. Biol. Philos. 2021, 36, 30. [Google Scholar] [CrossRef]
- Hohwy, J. The Diversity of Bayesian Explanation—A Reply to Dominic L. Harkness. In Open MIND; MIND Group: Frankfurt am Main, Germany, 2015; Volume 19 (R), pp. 1–6. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Badcock, P.B.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Badcock, P.B.; Ramstead, M.J.D.; Sheikhbahaee, Z.; Constant, A. Applying the free energy principle to complex adaptive systems. Entropy 2022, 24, 689. [Google Scholar] [CrossRef]
- Buskell, A. Normativity, social change, and the epistemological framing of culture. Behav. Brain Sci. 2020, 43, e96. [Google Scholar] [CrossRef]
- Bouizegarene, N. Have we lost the thinker in other minds? Human thinking beyond social norms. Behav. Brain Sci. 2020, 43, e94. [Google Scholar] [CrossRef]
- Zefferman, M.R.; Smaldino, P.E. Integrating models of cognition and culture will require a bit more math. Behav. Brain Sci. 2020, 43, e119. [Google Scholar] [CrossRef]
- Veissière, S.P.L.; Constant, A.; Ramstead, M.J.D.; Friston, K.J.; Kirmayer, L.J. Thinking through other minds: A variational approach to cognition and culture. Behav. Brain Sci. 2020, 43, e90. [Google Scholar] [CrossRef] [PubMed]
- Ramstead, M.J.D.; Kirchhoff, M.D.; Friston, K.J. A tale of two densities: Active inference is enactive inference. Adapt. Behav. 2020, 28, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Barrett, H.C. The Shape of THOUGHT: How Mental Adaptations Evolve; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Barrett, H.C. Towards a Cognitive Science of the Human: Cross-Cultural Approaches and Their Urgency. Trends Cogn. Sci. 2020, 24, 620–638. [Google Scholar] [CrossRef] [PubMed]
- Constant, A.; Ramstead, M.J.D.; Veissière, S.P.L.; Friston, K.J. Regimes of expectations: An active inference model of social conformity and human decision making. Front. Psychol. 2019, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Hoey, J. Equality and freedom as uncertainty in groups. Entropy 2021, 23, 1384. [Google Scholar] [CrossRef]
- Jaeger, C.M.; Schultz, P.W. Coupling social norms and commitments: Testing the underdetected nature of social influence. J. Environ. Psychol. 2017, 51, 199–208. [Google Scholar] [CrossRef]
- Aycinena, D.; Rentschler, L.; Beranek, B.; Schulz, J.F. Social norms and dishonesty across societies. Proc. Natl. Acad. Sci. USA 2022, 119, e2120138119. [Google Scholar] [CrossRef]
- Dempsey, R.C.; McAlaney, J.; Bewick, B.M. A critical appraisal of the social norms approach as an interventional strategy for health-related behavior and attitude change. Front. Psychol. 2018, 9, 2180. [Google Scholar] [CrossRef]
- Pryor, C.; Perfors, A.; Howe, P.D.L. Even arbitrary norms influence moral decision-making. Nat. Hum. Behav. 2019, 3, 57–62. [Google Scholar] [CrossRef]
- Kneeland, T. Coordination under limited depth of reasoning. Games Econ. Behav. 2016, 96, 49–64. [Google Scholar] [CrossRef]
- Bicchieri, C.; Dimant, E.; Gächter, S.; Nosenzo, D. Social proximity and the erosion of norm compliance. Games Econ. Behav. 2022, 132, 59–72. [Google Scholar] [CrossRef]
- Fehr, E.; Fischbacher, U. Third-party punishment and social norms. Evol. Hum. Behav. 2004, 25, 63–87. [Google Scholar] [CrossRef]
- Désilets, É.; Brisson, B.; Hétu, S. Sensitivity to social norm violation is related to political orientation. PLoS ONE 2020, 15, e0242996. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, G.A.; Wanders, F.; van Vianen, A.E.M.; Dunham, R.L.; Du, X.; Homan, A.C. Rebels with a cause? How norm violations shape dominance, prestige, and influence granting. PLoS ONE 2023, 18, e0294019. [Google Scholar] [CrossRef]
- Bruineberg, J.; Rietveld, E.; Parr, T.; van Maanen, L.; Friston, K.J. Free-energy minimization in joint agent-environment systems: A niche construction perspective. J. Theor. Biol. 2018, 455, 161–178. [Google Scholar] [CrossRef]
- Hindriks, F.; Guala, F. Institutions, rules, and equilibria: A unified theory. J. Inst. Econ. 2015, 11, 459–480. [Google Scholar] [CrossRef]
- Kallens, P.A.C.; Dale, R.; Smaldino, P.E. Cultural evolution of categorization. Cogn. Syst. Res. 2018, 52, 765–774. [Google Scholar] [CrossRef]
- Noyes, A.; Dunham, Y. Groups as institutions: The use of constitutive rules to attribute group membership. Cognition 2020, 196, 104143. [Google Scholar] [CrossRef]
- Bentley, R.A.; O’Brien, M.J. Collective behaviour, uncertainty and environmental change. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20140461. [Google Scholar] [CrossRef]
- Donaldson-Matasci, M.C.; Bergstrom, C.T.; Lachmann, M. The fitness value of information. Oikos 2010, 119, 219–230. [Google Scholar] [CrossRef]
- FeldmanHall, O.; Shenhav, A. Resolving uncertainty in a social world. Nat. Hum. Behav. 2019, 3, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Vasile, M.; Zuiani, F. Multi-agent collaborative search: An agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2011, 225, 1211–1227. [Google Scholar] [CrossRef]
- Verel, S.; Liefooghe, A.; Jourdan, L.; Dhaenens, C. Pareto local optima of multiobjective NK-landscapes with correlated objectives. In Proceedings of the Evolutionary Computation in Combinatorial Optimization, Seville, Spain, 15–17 April 2020; Merz, P., Hao, J.K., Eds.; Springer: Cham, Switzerland, 2011; pp. 226–237. [Google Scholar] [CrossRef]
- Cason, T.N.; Sheremeta, R.M.; Zhang, J. Communication and efficiency in competitive coordination games. Games Econ. Behav. 2012, 76, 26–43. [Google Scholar] [CrossRef]
- Aureli, F.; Schino, G. Social complexity from within: How individuals experience the structure and organization of their groups. Behav. Ecol. Sociobiol. 2019, 73, 6. [Google Scholar] [CrossRef]
- McEwen, B.S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17180–17185. [Google Scholar] [CrossRef]
- Hawkins, R.X.D.; Goldstone, R.L. The formation of social conventions in real-time environments. PLoS ONE 2016, 11, e0151670. [Google Scholar] [CrossRef]
- Deffner, D.; Kleinow, V.; McElreath, R. Dynamic social learning in temporally and spatially variable environments. R. Soc. Open Sci. 2020, 7, 200734. [Google Scholar] [CrossRef]
- Gross, E.B.; Medina-DeVilliers, S.E. Cognitive Processes Unfold in a Social Context: A Review and Extension of Social Baseline Theory. Front. Psychol. 2020, 11, 378. [Google Scholar] [CrossRef]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Reason, J., Fisher, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 629–649. [Google Scholar]
- McEwen, B.S. Stress, adaptation, and disease: Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Serviant-Fine, T.; Arminjon, M.; Fayet, Y.; Giroux, É. Allostatic load: Historical origins, promises and costs of a recent biosocial approach. BioSocieties 2023, 19, 301–325. [Google Scholar] [CrossRef]
- Ganzel, B.L.; Morris, P.A.; Wethington, E. Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychol. Rev. 2010, 117, 134–174. [Google Scholar] [CrossRef] [PubMed]
- Schulkin, J. Social allostasis: Anticipatory regulation of the internal milieu. Front. Evol. Neurosci. 2011, 2, 111. [Google Scholar] [CrossRef]
- Saxbe, D.E.; Beckes, L.; Stoycos, S.A.; Coan, J.A. Social Allostasis and Social Allostatic Load: A New Model for Research in Social Dynamics, Stress, and Health. Perspect. Psychol. Sci. 2020, 15, 469–482. [Google Scholar] [CrossRef]
- Beckes, L.; Coan, J.A. Social Baseline Theory: The Role of Social Proximity in Emotion and Economy of Action. Soc. Personal. Psychol. Compass 2011, 5, 976–988. [Google Scholar] [CrossRef]
- Coan, J.A.; Sbarra, D.A. Social Baseline Theory: The social regulation of risk and effort. Curr. Opin. Psychol. 2015, 1, 87–91. [Google Scholar] [CrossRef]
- Beckes, L.; Sbarra, D.A. Social baseline theory: State of the science and new directions. Curr. Opin. Psychol. 2022, 43, 36–41. [Google Scholar] [CrossRef]
- Turner, J.C.; Oakes, P.J.; Haslam, S.A.; McGarty, C. Self and Collective: Cognition and Social Context. Personal. Soc. Psychol. Bull. 1994, 20, 454–463. [Google Scholar] [CrossRef]
- Gallotti, M.; Fairhurst, M.T.; Frith, C.D. Alignment in social interactions. Conscious. Cogn. 2017, 48, 253–261. [Google Scholar] [CrossRef]
- Adolphs, R. Social cognition and the human brain. Trends Cogn. Sci. 1999, 3, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Malle, B.F. Folk theory of mind: Conceptual foundations of human social cognition. In The New Unconscious; Hassin, R.R., Uleman, J.S., Bargh, J.A., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 224–255. [Google Scholar] [CrossRef]
- Frith, C.D.; Frith, U. Mechanisms of Social Cognition. Annu. Rev. Psychol. 2012, 63, 287–313. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; van Riper, C.J.; Leitschuh, B.; Brymer, A.B.; Rawluk, A.; Raymond, C.M.; Kenter, J.O. Social learning as a link between the individual and the collective: Evaluating deliberation on social values. Sustain. Sci. 2019, 14, 1323–1332. [Google Scholar] [CrossRef]
- Shteynberg, G.; Hirsh, J.B.; Bentley, R.A.; Garthoff, J. Shared worlds and shared minds: A theory of collective learning and a psychology of common knowledge. Psychol. Rev. 2020, 127, 918–931. [Google Scholar] [CrossRef]
- Krafft, P.M.; Shmueli, E.; Griffiths, T.L.; Tenenbaum, J.B.; Pentland, A. Bayesian collective learning emerges from heuristic social learning. Cognition 2021, 212, 104469. [Google Scholar] [CrossRef]
- Boeltzig, M.; Johansson, M.; Bramão, I. Ingroup sources enhance associative inference. Commun. Psychol. 2023, 1, 40. [Google Scholar] [CrossRef]
- Birch, J.; Heyes, C. The cultural evolution of cultural evolution. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200051. [Google Scholar] [CrossRef]
- Frith, C.D.; Frith, U. The mystery of the brain–culture interface. Trends Cogn. Sci. 2022, 26, 1023–1025. [Google Scholar] [CrossRef]
- Toyokawa, W. Collective cognition and behaviour. Nat. Hum. Behav. 2023, 7, 1612–1613. [Google Scholar] [CrossRef]
- Heyes, C. Précis of cognitive gadgets: The cultural evolution of thinking. Behav. Brain Sci. 2019, 42, e169. [Google Scholar] [CrossRef]
- Acerbi, A.; Tennie, C.; Mesoudi, A. Social learning solves the problem of narrow-peaked search landscapes: Experimental evidence in humans. R. Soc. Open Sci. 2016, 3, 160215. [Google Scholar] [CrossRef] [PubMed]
- Kendal, R.L.; Watson, R. Adaptive Social Learning. In The Oxford Handbook of Cultural Evolution; Tehrani, J.J., Kendal, J., Kendal, R., Eds.; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Henrich, J.; Henrich, N. Culture, evolution and the puzzle of human cooperation. Cogn. Syst. Res. 2006, 7, 220–245. [Google Scholar] [CrossRef]
- Marriott, C.; Borg, J.M.; Andras, P.; Smaldino, P.E. Social Learning and Cultural Evolution in Artificial Life. Artif. Life 2018, 24, 5–9. [Google Scholar] [CrossRef]
- Langley, P. Learning to search: From weak methods to domain-specific heuristics. Cogn. Sci. 1985, 9, 217–260. [Google Scholar] [CrossRef]
- Fuchs, C. The role of the individual in the social information process. Entropy 2003, 5, 34–60. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Kemp, C.; Griffiths, T.L.; Goodman, N.D. How to Grow a Mind: Statistics, Structure, and Abstraction. Science 2011, 331, 1279–1285. [Google Scholar] [CrossRef]
- Bellman, R.; Kalaba, R.; Zadeh, L. Abstraction and pattern classification. J. Math. Anal. Appl. 1966, 13, 1–7. [Google Scholar] [CrossRef]
- Floridi, L. The method of levels of abstraction. Minds Mach. 2008, 18, 303–329. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 2011, 62, 451–482. [Google Scholar] [CrossRef]
- Harremoës, P. Information topologies with applications. In Entropy, Search, Complexity; Csiszár, I., Katona, G.O.H., Tardos, G., Wiener, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 16, pp. 113–150. [Google Scholar] [CrossRef]
- Kauffman, S.A.; Johnsen, S. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol. 1991, 149, 467–505. [Google Scholar] [CrossRef]
- de Visser, J.A.G.M.; Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 2014, 15, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Cosson, R.; Santana, R.; Derbel, B.; Liefooghe, A. Multi-objective NK landscapes with heterogeneous objectives. In Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 July 2022; Fieldsend, J.E., Ed.; ACM: New York, NY, USA, 2022; pp. 502–510. [Google Scholar] [CrossRef]
- Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003, 7, 386–396. [Google Scholar] [CrossRef]
- Vasile, M.; Ricciardi, L. Multi agent collaborative search. In Studies in Computational Intelligence; Springer: Cham, Switzerland, 2017; Volume 663, pp. 223–252. [Google Scholar] [CrossRef]
- Christianos, F.; Schäfer, L.; Albrecht, S.V. Shared experience actor-critic for multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst. 2020, 33, 10707–10717. [Google Scholar] [CrossRef]
- Hayes, C.F.; Rădulescu, R.; Bargiacchi, E.; Källström, J.; Macfarlane, M.; Reymond, M.; Verstraeten, T.; Zintgraf, L.M.; Dazeley, R.; Heintz, F.; et al. A practical guide to multi-objective reinforcement learning and planning. Auton. Agents Multi-Agent Syst. 2022, 36, 26. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Brighton, H. Homo Heuristicus: Why Biased Minds Make Better Inferences. Top. Cogn. Sci. 2009, 1, 107–143. [Google Scholar] [CrossRef]
- Hills, T.T.; Todd, P.M.; Lazer, D.; Redish, A.D.; Couzin, I.D. Exploration versus exploitation in space, mind, and society. Trends Cogn. Sci. 2015, 19, 46–54. [Google Scholar] [CrossRef]
- Gruber, T.; Chimento, M.; Aplin, L.M.; Biro, D. Efficiency fosters cumulative culture across species. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20200308. [Google Scholar] [CrossRef]
- Acerbi, A.; Enquist, M.; Ghirlanda, S. Cultural evolution and individual development of openness and conservatism. Proc. Natl. Acad. Sci. USA 2009, 106, 18931–18935. [Google Scholar] [CrossRef]
- Granovetter, M.S. Economic action and social structure: The problem of embeddednes. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Momennejad, I. Collective minds: Social network topology shapes collective cognition. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20200315. [Google Scholar] [CrossRef]
- Gamble, C.N.; Hanan, J.S. Figures of entanglement: Special issue introduction. Rev. Commun. 2016, 16, 265–280. [Google Scholar] [CrossRef]
- Jaksland, R. Entanglement as the world-making relation: Distance from entanglement. Synthese 2021, 198, 9661–9693. [Google Scholar] [CrossRef]
- Wilhelm, I. Intrinsicality and entanglement. Mind 2022, 131, 35–58. [Google Scholar] [CrossRef]
- Granovetter, M.S. The impact of social structure on economic outcomes. J. Econ. Perspect. 2005, 19, 33–50. [Google Scholar] [CrossRef]
- Polani, D. Measuring self-organization via observers. In Proceedings of the Advances in Artificial Life, Dortmund, Germany, 14–17 September 2003; Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T., Eds.; European Conference on Artificial Life; Lecture Notes in Artificial Intelligence. Springer: Berlin/Heidelberg, Germany, 2003; Volume 2801, pp. 667–675. [Google Scholar] [CrossRef]
- Polani, D. Foundations and formalizations of self-organization. In Advances in Applied Self-Organizing Systems; Prokopenko, M., Ed.; Springer: London, UK, 2008; pp. 19–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinal, J.S.; Loughmiller-Cardinal, J.A. Information, Entanglement, and Emergent Social Norms: Searching for ‘Normal’. Societies 2024, 14, 227. https://doi.org/10.3390/soc14110227
Cardinal JS, Loughmiller-Cardinal JA. Information, Entanglement, and Emergent Social Norms: Searching for ‘Normal’. Societies. 2024; 14(11):227. https://doi.org/10.3390/soc14110227
Chicago/Turabian StyleCardinal, James Scott, and Jennifer Ann Loughmiller-Cardinal. 2024. "Information, Entanglement, and Emergent Social Norms: Searching for ‘Normal’" Societies 14, no. 11: 227. https://doi.org/10.3390/soc14110227
APA StyleCardinal, J. S., & Loughmiller-Cardinal, J. A. (2024). Information, Entanglement, and Emergent Social Norms: Searching for ‘Normal’. Societies, 14(11), 227. https://doi.org/10.3390/soc14110227