A Comparative Study on the Influence of Chromium on the Phase Fraction and Elemental Distribution in As-Cast High Chromium Cast Irons: Simulation vs. Experimentation
Abstract
:1. Introduction
2. Materials and Methodology
3. Results and Discussion
3.1. Phase and Microstructural Analysis
3.2. Pseudo-Binary Phase Diagram
3.3. Carbide Volume Fraction
3.4. Chemical Composition
3.5. Hardness
4. Conclusions
- OM and SEM micrographs indicate a dispersion of M7C3 eutectic carbides in an austenitic matrix with a thin layer of martensite formed at the carbides’ periphery for both alloys. Although the matrix is purely austenite in Sample B, some partial transformation to pearlite has occurred in Sample A, owing to the low Cr/C ratio.
- The pseudo-binary phase diagrams constructed using MatCalc indicate the formation of M23C6 carbide at temperatures below 1050 °C in Sample B. However, the presence of M23C6 carbide was not detected due to the non-equilibrium cooling and the low Mo content of the alloy.
- An addition of 10 wt. % Cr lead to an increase of about 50% of the EC as evidenced by image analysis. The % CVF was lower when determined from MatCalc at Tsolidus. Nevertheless, by considering an undercooling range of 150 °C as a consequence of the non-equilibrium solidification, the predicted % CVF corresponded well with experimentally determined values. Therefore, the MatCalc simulated data is reliable for the determination of % CVF. The accuracy of the simulation software was further validated comparing the % CVF of several alloys (with different C and Cr contents) to the experimental values obtained by other authors from metallographic techniques.
- The predictions made by MatCalc are in accordance with the values obtained by EPMA. MatCalc also predicted an increase Cr/Fe ratio in the EC with increasing Cr content, which was corroborated by EPMA measurements. Additionally, the Cr/Fe ratio predicted by MatCalc for Sample B showed a good correspondence with experimental results found in the literature.
- Finally, the increase in the bulk hardness of Sample B was related to the increased M7C3 fraction, whereas the individual EC hardness was higher in Sample B than Sample A due to the increased Cr occupation in the EC. Despite the lower bulk and carbide hardness, the matrix hardness of Sample A was on par with B, probably due to the high C content in the matrix which prevented a decrement.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabrett, C.P.; Sare, I.R.; Ghomashchi, M.R. Microstructure-property relationships in high chromium white iron alloys. Int. Mater. Rev. 1996, 41, 59–82. [Google Scholar] [CrossRef]
- ASTM Standard A 532/A 532M-93a. Standard Specification for Abrasion Resistance Cast Irons; ASTM International: West Conshohocken, PA, USA, 2003; Available online: www.astm.org (accessed on 23 December 2019).
- International Organization for Standardization. Abrasion-Resistant Cast Irons-Classification (ISO 21988:2006); International Organization for Standardization: Geneva, Switzerland, 2006; Available online: www.iso.org (accessed on 23 December 2019).
- Karantzalis, E.; Lekatou, A.; Mavros, H. Microstructure and properties of high chromium cast irons: Effect of heat treatments and alloying additions. Int. J. Cast Met. Res. 2009, 22, 448–456. [Google Scholar] [CrossRef]
- Wiengmoon, A.; Pearce, J.T.H.; Chairuangsri, T. Relationship between microstructure, hardness and corrosion resistance in 20 wt. %Cr, 27 wt. %Cr and 36 wt. %Cr high chromium cast irons. Mater. Chem. Phys. 2011, 125, 739–748. [Google Scholar] [CrossRef]
- Laird, G.; Powell, G.L.F. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons. Metall. Trans. A 1993, 24, 981–988. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A.; Correa, R.; Quezada, J.G.; Maldonado, C. Effect of titanium on the as-cast microstructure of a 16%chromium white iron. Mater. Sci. Eng. A 2005, 398, 297–308. [Google Scholar] [CrossRef]
- Kopyciński, D.; Guzik, E.; Siekaniec, D.; Szczęsny, A. The effect of addition of titanium on the structure and properties of high chromium cast iron. Arch. Foundry Eng. 2015, 15, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Scandian, C.; Boher, C.; de Mello, J.D.B.; Rézaï-Aria, F. Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear. Wear 2009, 267, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Imurai, S.; Thanachayanont, C.; Pearce, J.T.H.; Tsuda, K.; Chairuangsri, T. Effects of Mo on microstructure of as-cast 28 wt. % Cr-2.6 wt. % C-(0-10) wt. % Mo irons. Mater. Charact. 2014, 90, 99–112. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, Y.; Zhao, J.; Yu, G.; Shen, J.; Hu, S. Effect of tungsten on microstructure and properties of high chromium cast iron. Mater. Des. 2012, 39, 303–308. [Google Scholar] [CrossRef]
- Cortés-Carrillo, E.; Bedolla-Jacuinde, A.; Mejía, I.; Zepeda, C.M.; Zuno-Silva, J.; Guerra-Lopez, F.V. Effects of tungsten on the microstructure and on the abrasive wear behavior of a high-chromium white iron. Wear 2017, 376–377, 77–85. [Google Scholar] [CrossRef]
- Doǧan, Ö.N.; Hawk, J.A. Effect of carbide orientation on abrasion of high Cr white cast iron. Wear 1995, 189, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Gahr, K.H.Z.; Doane, D.V. Optimizing fracture toughness and abrasion resistance in white cast irons. Metall. Trans. A 1980, 11, 613–620. [Google Scholar] [CrossRef]
- Asensio, J.; Pero-Sanz, J.A.; Verdeja, J.I. Microstructure selection criteria for cast irons with more than 10 wt. % chromium for wear applications. Mater. Charact. 2002, 49, 83–93. [Google Scholar] [CrossRef]
- Maratray, F.; Poulalion, A. Austenite Retention in High-Chromium White Irons. Trans. Am. Foundrym. Soc. 1982, 90, 795–804. [Google Scholar]
- Poolthong, N.; Nomura, H.; Takita, M. Effect of heat treatment on microstructure and properties of semi-solid chromium cast iron. Mater. Trans. 2004, 45, 880–887. [Google Scholar] [CrossRef]
- ASM Handbook Volume 3: Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 2016; ISBN 978-1-62708-070-5. Available online: www.asminternational.org (accessed on 23 December 2019).
- Kozeschnik, E.; Buchmayr, B. Matcalc—A simulation tool for multicomponent thermodynamics, diffusion and phase transformations. In Proceedings of the Mathematical Modelling of Weld Phenomena, Leibnitz, Austria, 1–3 October 2001; pp. 349–361. [Google Scholar]
- Kroupa, A. Modelling of phase diagrams and thermodynamic properties using Calphad method—Development of thermodynamic databases. Comput. Mater. Sci. 2013, 66, 3–13. [Google Scholar] [CrossRef]
- Li, D.; Liu, L.; Zhang, Y.; Ye, C.; Ren, X.; Yang, Y.; Yang, Q. Phase diagram calculation of high chromium cast irons and influence of its chemical composition. Mater. Des. 2009, 30, 340–345. [Google Scholar] [CrossRef]
- Albertin, E.; Beneduce, F.; Matsumoto, M.; Teixeira, I. Optimizing heat treatment and wear resistance of high chromium cast irons using computational thermodynamics. Wear 2011, 271, 1813–1818. [Google Scholar] [CrossRef]
- Akyildiz, Ö.; Candemir, D.; Yildirim, H. Simulation of Phase Equilibria in High Chromium White Cast Irons. Uludağ Univ. J. Fac. Eng. 2018, 23, 179–190. [Google Scholar] [CrossRef]
- Guitar, M.A.; Scheid, A.; Suárez, S.; Britz, D.; Guigou, M.D.; Mücklich, F. Secondary carbides in high chromium cast irons: An alternative approach to their morphological and spatial distribution characterization. Mater. Charact. 2018, 144, 621–630. [Google Scholar] [CrossRef]
- Guitar, M.A.; Suárez, S.; Prat, O.; Duarte Guigou, M.; Gari, V.; Pereira, G.; Mücklich, F. High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties. J. Mater. Eng. Perform. 2018, 27, 3877–3885. [Google Scholar] [CrossRef]
- Collins, W.K.; Watson, J.C. Metallographic etching for carbide volume fraction of high-chromium white cast irons. Mater. Charact. 1990, 24, 379–386. [Google Scholar] [CrossRef]
- Wiengmoon, A.; Chairuangsri, T.; Poolthong, N.; Pearce, J.T.H. Electron microscopy and hardness study of a semi-solid processed 27 wt%Cr cast iron. Mater. Sci. Eng. A 2008, 480, 333–341. [Google Scholar] [CrossRef]
- Schindelin, J.; Ignacio Arganda-Carreras, E.F.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Maratray, F.; Usseglio-Nanot, R. Factors Affecting the Structure of Chromium and Chromium—Molybdenum White Irons; Climax Molybdenum S. A: Paris, France, 1970. [Google Scholar]
- Doǧan, Ö.N.; Hawk, J.A.; Laird, G. Solidification structure and abrasion resistance of high chromium white irons. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1997, 28, 1315–1328. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A.; Hernández, B.; Béjar-Gómez, L. SEM study on the M7C3 carbide nucleation during eutectic solidification of high chromium white irons. Zeitschrift Met. 2005, 96, 1380–1385. [Google Scholar]
- Zumelzu, E.; Goyos, I.; Cabezas, C.; Opitz, O.; Parada, A. Wear and corrosion behaviour of high-chromium (14–30% Cr) cast iron alloys. J. Mater. Process. Technol. 2002, 128, 250–255. [Google Scholar] [CrossRef]
- Maratray, F. Choice of appropriate compositions for chromium-molybdenum white irons. AFS Trans. 1971, 79, 121–124. [Google Scholar]
- Abdel-Aziz, K.; El-Shennawy, M.; Omar, A.A. Microstructural Characteristics and Mechanical Properties of Heat Treated High-Cr White Cast Iron Alloys. Int. J. Apll. Eng. Res. 2017, 12, 4675–4686. [Google Scholar]
- Doǧan, Ö.N.; Laird, G.; Hawk, J.A. Abrasion resistance of the columnar zone in high Cr white cast irons. Wear 1995, 181, 342–349. [Google Scholar] [CrossRef]
- Matsubara, Y.; Ogi, K.; Matsuda, K. Eutectic Solidification of High-Chromium Cast Iron—Eutectic Structures and Their Quantitative Analysis. Trans. Am. Foundrym. Soc. 1982, 89, 183–196. [Google Scholar]
- Ohide, T.; Ohira, G. Solidification of High Chromium Alloyed Cast Iron. Foundryman 1983, 76, 7–14. [Google Scholar]
- Doǧan, Ö.N. Columnar to equiaxed transition in high Cr white iron castings. Scr. Mater. 1996, 35, 163–168. [Google Scholar] [CrossRef]
- Filipovic, M.; Romhanji, E.; Kamberovic, Z. Chemical composition and morphology of M7C3 eutectic carbide in high chromium white cast iron alloyed with vanadium. ISIJ Int. 2012, 52, 2200–2204. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, N.I.; Van Aken, D.C.; Medvedeva, J.E. Stability of binary and ternary M23C6 carbides from first principles. Comput. Mater. Sci. 2015, 96, 159–164. [Google Scholar] [CrossRef]
- Choi, J.W.; Chang, S.K. Effects of Molybdenum and Copper Additions on Microstructure of High Chromium Cast Iron Rolls. ISIJ Int. 1992, 32, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Powell, G.L.F.; Laird, G. Structure, nucleation, growth and morphology of secondary carbides in high chromium and Cr-Ni white cast irons. J. Mater. Sci. 1992, 27, 29–35. [Google Scholar] [CrossRef]
- Laird, G. Microstructures of Ni-Hard I, Ni-Hard IV and High-Cr White Cast Irons. AFS Trans. 1991, 99, 339–357. [Google Scholar]
- Carpenter, S.D.; Carpenter, D.; Pearce, J.T.H. XRD and electron microscope study of an as-cast 26.6% chromium white iron microstructure. Mater. Chem. Phys. 2004, 85, 32–40. [Google Scholar] [CrossRef]
- Kagawa, A.; Okamoto, T.; Saito, K.; Ohta, M. Hot hardness of (Fe, Cr)3C and (Fe, Cr)7C3 carbides. J. Mater. Sci. 1984, 19, 2546–2554. [Google Scholar] [CrossRef]
Alloy | C | Cr | Mn | Ni | Mo | Si | Cu | P | S | Fe | Cr/C |
---|---|---|---|---|---|---|---|---|---|---|---|
16% HCCI (Sample A) | 2.43 | 15.84 | 0.76 | 0.18 | 0.41 | 0.47 | 0.04 | 0.02 | 0.02 | Bal. | 6.5 |
26% HCCI (Sample B) | 2.53 | 26.60 | 0.66 | 0.26 | 0.24 | 0.37 | 0.03 | <0.01 | 0.04 | Bal. | 10.5 |
Etchant | Solution Temperature | Etching Time |
---|---|---|
Vilella’s | Room temperature (20 °C) | 7–15 s |
Modified Murakami’s | 60 °C | 5 min |
10% HCl in methanol | Room temperature (20 °C) | 24 h |
Sample | Emperical Formulae (%) | MatCalc (at Tsolidus) (%) | MatCalc (at Tsolidus −150 °C) (%) | Experimental (I-A) (%) | |
---|---|---|---|---|---|
Maratray [29] | Doğan [30] | ||||
A (16% HCCI) | 23.4 ± 2.1 | 19.0 | 18.4 | 21.2 ± 1.5 | 19.4 ± 0.4 |
B (26% HCCI) | 30.6 ± 2.1 | 25.0 | 25.8 | 27.7 ± 1.1 | 30.4 ± 0.6 |
Study | Alloy | Chemical Composition (wt. %) | Cr/C | % CVF (Experiment) | % CVF Equation (1) | % CVF Equation (2) | % CVF (MatCalc) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Cr | Mn | Mo | Si | Ni | Fe | |||||||
Maratray et al. [29] | M1 | 2.08 | 15.85 | 0.70 | - | 1.00 | - | Bal. | 7.6 | 18.7 | 19.2 ± 2.1 | 14.0 | 16.8 ± 1.5 |
M2 | 4.10 | 15.10 | 0.70 | - | 1.00 | - | Bal. | 3.7 | 42.0 | 43.7 ± 2.1 | 42.1 | 40.9 ± 1.2 | |
M3 | 2.08 | 20.55 | 0.70 | - | 1.00 | - | Bal. | 9.9 | 20.5 | 21.7 ± 2.1 | 16.1 | 19.7 ± 1.3 | |
M4 | 2.95 | 25.82 | 0.70 | 0.02 | 1.00 | - | Bal. | 8.8 | 32.3 | 35.4 ± 2.1 | 30.6 | 32.3 ± 1.0 | |
Doğan et al. [30] | D1 | 3.54 | 15.2 | 0.61 | 0.31 | 0.51 | 0.18 | Bal. | 4.3 | 33.0 ± 2.0 | 36.8 ± 2.1 | 34.3 | 34.0 ± 1.4 |
D2 | 2.76 | 26.2 | 0.93 | 0.38 | 0.42 | 0.38 | Bal. | 9.5 | 29.0 ± 1.0 | 33.2 ± 2.1 | 28.0 | 30.4 ± 1.1 |
Sample | Matrix | Carbide | (CrxFey)C3 | |||||
---|---|---|---|---|---|---|---|---|
Element (wt. %) | EPMA | MatCalc | Element (wt. %) | EPMA | MatCalc | EPMA | MatCalc | |
A (16% HCCI) | C | 0.86 ± 0.34 | 1.12 ± 0.12 | C | 7.54 ± 0.49 | 8.71 ± 0.00 | (Cr3.9Fe3.1)C3 | (Cr3.9Fe3.1)C3 |
Cr | 12.10 ± 0.21 | 8.79 ± 0.71 | Cr | 48.81 ± 3.63 | 49.5 ± 0.45 | |||
Mn | 0.60 ± 0.02 | 0.77 ± 0.00 | Mn | - | - | |||
Ni | 0.13 ± 0.03 | 0.21 ± 0.00 | Ni | 0 | 0 | |||
Mo | 0.21 ± 0.04 | 0.27 ± 0.03 | Mo | - | - | |||
Fe | 85.6 ± 0.3 | 88.84 ±0.85 | Fe | 41.99 ± 3.65 | 39.99 ± 0.52 | |||
B (26% HCCI) | C | 0.43 ± 0.13 | 0.69 ± 0.09 | C | 7.85 ± 0.53 | 8.83±0.00 | (Cr5Fe2)C3 | (Cr5Fe2)C3 |
Cr | 18.21 ± 1.24 | 15.37 ± 0.78 | Cr | 63.07 ± 1.87 | 65.13 ± 0.77 | |||
Mn | 0.67 ± 0.03 | 0.72 ± 0.00 | Mn | - | - | |||
Ni | 0.20 ± 0.04 | 0.33 ± 0.00 | Ni | 0 | 0 | |||
Mo | 0.14 ± 0.03 | 0.2 ± 0.01 | Mo | - | - | |||
Fe | 80.0 ± 1.3 | 82.68 ± 0.87 | Fe | 28.36 ± 2.11 | 25.19 ± 0.79 |
Sample | Rockwell (HRC) (Bulk) | Vickers (HV0.1) (Matrix) | Nanoindentation (GPa) (EC) |
---|---|---|---|
A (16% HCCI) | 46.3 ± 0.8 | 356 ± 11 | 13.1 ± 1.7 |
B (26% HCCI) | 49.3 ± 0.5 | 360 ± 21 | 19.0 ± 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, U.P.; Guitar, M.A.; Mücklich, F. A Comparative Study on the Influence of Chromium on the Phase Fraction and Elemental Distribution in As-Cast High Chromium Cast Irons: Simulation vs. Experimentation. Metals 2020, 10, 30. https://doi.org/10.3390/met10010030
Nayak UP, Guitar MA, Mücklich F. A Comparative Study on the Influence of Chromium on the Phase Fraction and Elemental Distribution in As-Cast High Chromium Cast Irons: Simulation vs. Experimentation. Metals. 2020; 10(1):30. https://doi.org/10.3390/met10010030
Chicago/Turabian StyleNayak, U. Pranav, María Agustina Guitar, and Frank Mücklich. 2020. "A Comparative Study on the Influence of Chromium on the Phase Fraction and Elemental Distribution in As-Cast High Chromium Cast Irons: Simulation vs. Experimentation" Metals 10, no. 1: 30. https://doi.org/10.3390/met10010030
APA StyleNayak, U. P., Guitar, M. A., & Mücklich, F. (2020). A Comparative Study on the Influence of Chromium on the Phase Fraction and Elemental Distribution in As-Cast High Chromium Cast Irons: Simulation vs. Experimentation. Metals, 10(1), 30. https://doi.org/10.3390/met10010030