Quasi-Particle Approach to the Autowave Physics of Metal Plasticity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. On the Possibility of Introduction of the Quasi-Particle
3.1.1. Mass Associated with the Localized Plasticity Autowave
3.1.2. Nature of the Effective Mass
3.1.3. Nature of the Effective Mass
3.2. Autolocalizon and Localized Plastic Flow
3.2.1. Some Characteristics of Autowave Plastic Flow
3.2.2. Autowave Length as the Free Path Length of the Autolocalizon
3.2.3. Elastic-Plastic Invariant of Deformation and Autolocalizon
4. Discussion
4.1. Elementary Excitation Spectrum of a Plastically Deforming Medium
4.1.1. Hybridized Spectrum of an Elastic-Plastic Medium
4.1.2. Autolocalizon Dispersion and Effective Mass
4.1.3. Condensation of Quasi-Particles during Plastic Flow
4.1.4. General Meaning of Autolocalizon Introduction
4.1.5. Plastic Flow as a Macroscopic Quantum Phenomenon
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zuev, L.B.; Barannikova, S.A. Autowave physics of material plasticity. Crystals 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Zuev, L.B. Autowave mechanics of plastic flow in solids. Phys. Wave Phenom. 2012, 20, 166–173. [Google Scholar] [CrossRef]
- Zuev, L.B. Wave phenomena in low-rate plastic flow of solids. Ann. Phys. 2001, 10, 965–984. [Google Scholar] [CrossRef]
- Zuev, L.B. On the waves of plastic flow localization in pure metals and alloys. Ann. Phys. 2007, 16, 287–310. [Google Scholar] [CrossRef]
- Brandt, N.B.; Kulbachinskii, V.A. Quasi-Particles in Condensed State Physics; Fizmatlit: Moscow, Russia, 2007; 631p. [Google Scholar]
- Bell, J.F. Mechanics of Solids; Springer: Berlin/Heidelberg, Germany, 1973; 596p. [Google Scholar]
- Steverding, B. Quantization of stress waves and fracture. Mater. Sci. Eng. 1972, 9, 185–189. [Google Scholar] [CrossRef]
- Maugin, G.A. Solitons in elastic solid. Mech. Res. Commun. 2011, 38, 341–349. [Google Scholar] [CrossRef]
- Gilman, J.J. Escape of dislocations from bound states by tunneling. J. Appl. Phys. 1968, 39, 6086–6090. [Google Scholar] [CrossRef]
- Oku, T.; Galligan, J.M. Quantum mechanical tunneling of dislocations. Phys. Rev. Lett. 1969, 22, 596–597. [Google Scholar] [CrossRef]
- Petukhov, B.V.; Pokrovskii, V.L. Quantum and classic motion of dislocations in the potential Peierls relief. J. Exp. Theor. Phys. 1972, 63, 634–647. [Google Scholar]
- Iqbal, S.; Sarwar, F.; Rasa, S.V. Quantum mechanics tunneling of dislocations: Quantization and depinning from Peierls barrier. World J. Cond. Mater. Phys. 2016, 6, 103–108. [Google Scholar]
- Morozov, E.M.; Polak, L.S.; Fridman, Y.B. On variation principles of crack development in solids. Sov. Phys. Dokl. 1964, 156, 537–540. [Google Scholar]
- Zhurkov, S.N. Dilaton mechanism of the strength of solids. Solid Stat. Phys. 1983, 25, 1797–1800. [Google Scholar]
- Olemskoi, A.I.; Katsnelson, A.A. A Synergetic of Condensed Medium; URSS: Moscow, Russia, 2003; 335p. [Google Scholar]
- Billingsley, J.P. The possible influence of the de Broglie momentum-wavelength relation on plastic strain “autowave” phenomena in “active materials”. Int. J. Solids Struct. 2001, 38, 4221–4234. [Google Scholar] [CrossRef]
- Danilov, V.I.; Barannikova, S.A.; Zuev, L.B. Localized Strain Autowaves at the Initial Stage of Plastic Flow in Single Crystals. Tech. Phys. 2003, 48, 1429–1435. [Google Scholar] [CrossRef]
- Zuev, L.B.; Danilov, V.I. Plastic deformation viewed as evolution of an active medium. Int. J. Solids Struct. 1997, 34, 3795–3805. [Google Scholar] [CrossRef]
- Zuev, L.B.; Danilov, V.I. A self-excited wave model of plastic deformation in solids. Philos. Mag. A 1999, 79, 43–57. [Google Scholar] [CrossRef]
- Zuev, L.B. The linear work hardening stage and de Broglie equation for autowaves of localized plasticity. Int. J. Solids Struct. 2005, 42, 943–949. [Google Scholar] [CrossRef]
- Zuev, L.B.; Danilov, V.I.; Barannikova, S.A.; Zykov, I.Y. Plastic flow localization as a new kind of wave processes in solids. Mater. Sci. Eng. A 2001, 319–321, 160–163. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Course of Theoretical Physics. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987; Volume 6, 539p. [Google Scholar]
- Alshits, V.I.; Indenbom, V.L. Mechanisms of dislocation drag. In Dislocations in Crystals; Nabarro, F.R.N., Ed.; North-Holland: Amsterdam, The Netherlands, 1986; Volume 7, pp. 43–111. [Google Scholar]
- Eshelby, J.D. Continual theory of defects. Solid Stat. Phys. 1956, 3, 79–173. [Google Scholar]
- Newnham, R.E. Properties of Materials; University Press: Oxford, UK, 2005; p. 378. [Google Scholar]
- Bobrov, V.S.; Zaitsev, S.I.; Lebyodkin, M.A. Statistics of dynamic processes at low temperature serrated deformation of metals. Phys. Solid Stat. 1990, 32, 3060–3065. [Google Scholar]
- Bobrov, V.S.; Lebyodkin, M.A. The role of dynamic processes at low temperature serrated deformation of aluminium. Phys. Solid Stat. 1993, 35, 1881–1889. [Google Scholar]
- Lebyodkin, M.; Bougherira, Y.; Lebedkina, T.; Entemeyer, D. Scaling in the local strain-rate field during jerky flow in an Аl-3%Мg alloy. Metals 2020, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Zuev, L.B. Autowave Plasticity. In Localization and Collective Modes; Fizmatlit: Moscow, Russia, 2018; 208p. [Google Scholar]
- Atkins, P.W. Quanta. A Handbook of Conceptions; Clarendon Press: Oxford, UK, 1974; 319p. [Google Scholar]
- Hudson, D.J. Statistics; CERN: Geneva, Switzerland, 1964; 242p. [Google Scholar]
- Zuev, L.B.; Barannikova, S.A.; Maslova, O.A. The features of localized plasticity autowaves in solids. Mater. Res. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Barannikova, S.A.; Danilov, V.I.; Zuev, L.B. Plastic strain localization in Fe-3%Si single crystals and polycrystals under tension. Tech. Phys. 2004, 49, 1296–1300. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Zhemchuzhnikova, D.A.; Lebedkina, T.A.; Aifantis, E.C. Kinematics of formation and cessation of type B deformation bands during the Portevin-Le Chatelier effect in an Al-Mg alloy. Results Phys. 2019, 12, 867–869. [Google Scholar] [CrossRef]
- Kubin, L.P.; Chihab, K.; Estrin, Y.Z. The rate dependence of the Portevin—Le Chatelier effect. Acta Metall. 1988, 36, 2707–2718. [Google Scholar] [CrossRef]
- Kubin, L.P.; Estrin, Y.Z. The critical condition for jerky flow. Phys. Stat. Solid 1992, 172, 173–185. [Google Scholar] [CrossRef]
- Rizzi, E.; Hähner, P. On the Portevin—Le Chtelier effect: Theoretical modeling and numerical results. Int. J. Plast. 2004, 29, 121–165. [Google Scholar] [CrossRef]
- Zaiser, M.; Aifantis, E.C. Randomness and slip avalanches in gradient plasticity. Int. J. Plast. 2006, 22, 1432–1455. [Google Scholar] [CrossRef]
- Pustovalov, V.V. Serrated deformation of metals and alloys at low temperatures. Phys. Low Temp. 2008, 34, 871–913. [Google Scholar] [CrossRef]
- Rumer, Y.B.; Ryvkin, M.S. Thermodynamics, Statistical Physics and Kinetics; Mir Publ.: Moscow, Russia, 1980; 600p. [Google Scholar]
- Umezava, H.; Matsumoto, H. Thermo Field Dynamics and Condensed States; North-Holland Publ. Comp.: Amsterdam, The Netherlands, 1982; 504p. [Google Scholar]
- Kuhlmann-Wilsdorf, D. The low energetic structures theory of solid plasticity. In Dislocations in Solids, Nabarro, F.R.N., Duesbery, M.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 213–338. [Google Scholar]
- Landau, L.D.; Khalatnikov, I.M. The theory of viscosity HeII. J. Exp. Theor. Phys. 1949, 19, 637–650. [Google Scholar]
- Reissland, J.A. The Physics of Phonons; John Wiley and Sons LTL: London, UK, 1973; 365p. [Google Scholar]
- Psakhie, S.G.; Zolnikov, K.P.; Kryzhevich, D.S. Elementary atomistic mechanism of crystal plasticity. Phys. Lett. A 2007, 367, 250–253. [Google Scholar] [CrossRef]
- Psakhie, S.G.; Shilko, E.V.; Popov, M.V.; Popov, V.L. The key role of elastic vortices in the initiation of shear cracks. Phys. Rev. E 2015, 91, 63302. [Google Scholar]
- Dmitriev, A.I.; Nikonov, A.Y.; Filippov, A.E.; Psakhie, S.G. Molecular Dynamics Study of the Evolution of Rotational Atomic Displacements in a Crystal Subjected to Shear Deformation. Phys. Mesomech. 2019, 22, 375–381. [Google Scholar] [CrossRef]
- Tilley, D.R.; Tilley, J. Superfluidity and Superconductivity; IOP Publ.: Bristol, UK, 1990; 268p. [Google Scholar]
- Imry, Y. Introduction to Mesoscopic Physics; University Press: Oxford, UK, 2002; 236p. [Google Scholar]
- Katanaev, M.O. Geometric theory of defects. Phys. Uspekhi 2005, 175, 705–733. [Google Scholar] [CrossRef] [Green Version]
- Indenbom, V.L. The structure of real crystals. In The Modern Crystallography; Vainstein, B.K., Fridkin, V.M., Indenbom, V.L., Eds.; Nauka Publ.: Moscow, Russia, 1979; pp. 297–341. [Google Scholar]
- Hull, D.; Bacon, D.J. Introduction in Dislocations; Elsevier: Oxford, UK, 2011; 272p. [Google Scholar]
Mass | Metals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Zn | Al | Zr | Ti | V | Nb | α-Fe | ɤ-Fe | Ni | Co | |
1.8 | 1.1 | 0.5 | 2.0 | 1.1 | 1.4 | 2.3 | 1.8 | 1.8 | 1.9 | 1.3 | |
Sn | Mg | Cd | In | Pb | Ta | Mo | Hf | - | - | - | |
1.3 | 4.0 | 4.2 | 1.6 | 1.3 | 0.6 | 0.3 | 4.0 | - | - | - |
Parameter | Metals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Zn | Al | Zr | Ti | V | Nb | α-Fe | ɤ-Fe | Ni | Co | |
11.9 | 9.3 | 2.8 | 6.1 | 4.9 | 3.5 | 4.9 | 4.6 | 4.6 | 6.1 | 7.1 | |
Sn | Mg | Cd | In | Pb | Ta | Mo | Hf | - | - | - | |
8.9 | 4.9 | 7.4 | 9.9 | 18.4 | 5.5 | 3.0 | 7.3 | - | - | - |
Characteristic | Formula | Value |
---|---|---|
Dispersion law | - | |
Mass (amu) | 1.7 ± 0.2 | |
Velocity (m/s) | 10–5…10–4 | |
Momentum (J∙s/m) | (6…7)∙10–32 |
Value | Metals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Zn | Al | Zr | Ti | V | Nb | α-Fe | ɤ-Fe | Ni | Co | |
0.75 | 0.31 | 1.05 | 0.55 | 0.32 | 0.45 | 0.33 | 0.54 | 0.34 | 0.35 | 0.5 | |
0.42 | 0.5 | 4.47 | 0.33 | 0.42 | 0.85 | 0.44 | 0.46 | 0.48 | 0.35 | 0.38 | |
Sn | Mg | Cd | In | Pb | Ta | Mo | Hf | ||||
0.65 | 0.63 | 0.27 | 1.18 | 1.4 | 2.7 | 0.4 | 0.33 | ||||
0.48 | 0.98 | 0.24 | 0.78 | 0.5 | 1.1 | 0.2 | 0.24 |
Phenomenon | Quantum Characteristic | |
---|---|---|
Value | Formula | |
Superconductivity [5] | Magnetic flux | |
Superfluidity [5] | Rotational velocity of vortices in superfluidity HeII | |
Quantum Hall effect [49] | The Hall resistance | |
Serrated plastic deformation | Elongation during deformation jump |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuev, L.B.; Barannikova, S.A. Quasi-Particle Approach to the Autowave Physics of Metal Plasticity. Metals 2020, 10, 1446. https://doi.org/10.3390/met10111446
Zuev LB, Barannikova SA. Quasi-Particle Approach to the Autowave Physics of Metal Plasticity. Metals. 2020; 10(11):1446. https://doi.org/10.3390/met10111446
Chicago/Turabian StyleZuev, Lev B., and Svetlana A. Barannikova. 2020. "Quasi-Particle Approach to the Autowave Physics of Metal Plasticity" Metals 10, no. 11: 1446. https://doi.org/10.3390/met10111446
APA StyleZuev, L. B., & Barannikova, S. A. (2020). Quasi-Particle Approach to the Autowave Physics of Metal Plasticity. Metals, 10(11), 1446. https://doi.org/10.3390/met10111446