Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundaries
Abstract
:1. Introduction
2. Mathematical Notations
3. Review of the Incompatible Elasto-Static Defect Theory
3.1. Incompatibility in the Dislocation Model
3.2. Incompatibility in the Dislocation and Disclination Model
4. Elasticity in Incompatible Media Containing Dislocations and Disclinations
4.1. Field Equations
4.2. Solving the Incompatible Elasticity Problem
4.3. Elasticity in Dislocation/Disclination Cores
Nonlocal Convolution Integrals
5. Transport of Dislocations and Disclinations
6. Constitutive Relations for Dislocation and Disclination Mobility
7. Solution Algorithms
7.1. Complete Algorithm
7.2. Reduced Algorithm
7.3. Numerical Implementation
8. A Plane Edge-Wedge Model
9. Structure and Elastic Energy of Symmetric Tilt Boundaries
10. Shear-Coupled Migration of Symmetric Tilt Boundaries
11. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Volterra, V. Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ecol. Norm. Supér. III 1907, 24, 401–517. [Google Scholar] [CrossRef] [Green Version]
- De Wit, R. Linear theory of static disclinations. In Fundamental Aspects of Dislocation Theory; Simmons, J.A., de Wit, R., Bullough, R., Eds.; National Bureau of Standards Special Publication: Washington, DC, USA, 1970; Volume 317, pp. 651–680. [Google Scholar]
- Friedel, J. Dislocations; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Romanov, A.E.; Vladimirov, V.I. Disclinations in crystalline solids. In Dislocations in Solids; Nabarro, F.R.N., Ed.; Elsevier: Amsterdam, The Netherlans, 1992; Volume 9, p. 191. [Google Scholar]
- Romanov, A.E.; Kolesnikova, A.L. Application of disclination concept to solid structures. Prog. Mater. Sci. 2009, 54, 740–769. [Google Scholar] [CrossRef]
- Beausir, B.; Fressengeas, C. Disclination densities from EBSD orientation mapping. Int. J. Solids Struct. 2013, 50, 137–146. [Google Scholar] [CrossRef]
- Fressengeas, C.; Beausir, B. Tangential continuity of the curvature tensor at grain boundaries underpins disclination density determination from spatially mapped orientation data. Int. J. Solids Struct. 2019, 156–157, 210–215. [Google Scholar] [CrossRef]
- Bozhko, S.I.; Taupin, V.; Lebyodkin, M.; Fressengeas, C.; Levchenko, E.A.; Radikan, K.; Lübben, O.; Semenov, V.N.; Shvets, I.V. Disclinations in C60 molecular layers on WO2/W(110) surfaces. Phys. Rev. B 2014, 90, 214106. [Google Scholar] [CrossRef] [Green Version]
- Gertsman, V.Y.; Nazarov, A.A.; Romanov, A.E.; Valiev, R.Z.; Vladimirov, V.I. Disclination-structural unit model of grain boundaries. Philos. Mag. A 1989, 59, 1113–1118. [Google Scholar] [CrossRef]
- Hurtado, J.A.; Eliott, B.R.; Shodja, H.M.; Gorelikov, D.V.; Campbell, C.E.; Lippard, H.E.; Isabell, T.C.; Weertmann, J. Disclination grain boundary model with plastic deformation by dislocations. Mater. Sci. Eng. A 1995, 190, 1. [Google Scholar] [CrossRef]
- Li, J.C.M. Disclination model of high angle grain boundaries. Surf. Sci. 1972, 31, 12. [Google Scholar] [CrossRef]
- Shih, K.K.; Li, J.C.M. Energy of grain boundaries between cusp misorientations. Surf. Sci. 1975, 50, 109–124. [Google Scholar] [CrossRef]
- Berbenni, S.; Paliwal, B.; Cherkaoui, M. A micromechanical-based model for shear-coupled grain boundary migration in bicrystals. Int. J. Plast. 2013, 44, 68–94. [Google Scholar] [CrossRef] [Green Version]
- Cahn, J.W.; Mishin, Y.; Suzuki, A. Coupling grain boundary motion to shear deformation. Acta Mater. 2006, 54, 4953–4975. [Google Scholar] [CrossRef]
- Farkas, D.; Froseth, A.; Van Swygenhoven, H. Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scr. Mater. 2006, 55, 695–698. [Google Scholar] [CrossRef]
- Tucker, G.J.; Zimmerman, J.A.; McDowell, D.L. Shear deformation kinematics of bicrystalline grain boundaries in atomistic simulations. Model. Simul. Mater. Sci. Eng. 2010, 18, 015002. [Google Scholar] [CrossRef]
- Taupin, V.; Capolungo, L.; Fressengeas, C. Disclination mediated plasticity in shear-coupled boundary migration. Int. J. Plast. 2014, 53, 179–192. [Google Scholar] [CrossRef]
- Fressengeas, C.; Taupin, V.; Capolungo, L. An elasto-plastic theory of dislocation and disclination fields. Int. J. Solids Struct. 2011, 48, 3499–3509. [Google Scholar] [CrossRef] [Green Version]
- Acharya, A.; Fressengeas, C. Continuum mechanics of the interactions between phase boundaries and dislocations in solids. In Differential Geometry and Continuum Mechanics; Chen, G.Q., Grinfeld, M., Knops, R.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 137, pp. 125–168. [Google Scholar]
- Kröner, E. Kontinuumstheorie der Versetzungen und Eigenspannungen (Ergebnisse der Angewandten Mathematik, No. 5); Collatz, L., Lösch, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1958. [Google Scholar]
- Kröner, E. Continuum theory of defects. In Physics of Defects; North Holland: Amsterdam, The Netherlands, 1980; pp. 218–314. [Google Scholar]
- Acharya, A. A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 2001, 49, 761. [Google Scholar] [CrossRef]
- Acharya, A. Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. 2003, A459, 1343–1363. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Das, A.; Acharya, A. Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics. J. Mech. Phys. Solids 2011, 59, 2400–2417. [Google Scholar] [CrossRef]
- Taupin, V.; Varadhan, S.; Chevy, J.; Fressengeas, C.; Beaudoin, A.J.; Montagnat, M.; Duval, P. Effects of size on the dynamics of dislocations in ice single crystals. Phys. Rev. Lett. 2007, 99, 155507. [Google Scholar] [CrossRef]
- Taupin, V.; Varadhan, S.; Fressengeas, C.; Beaudoin, A.J. Directionality of yield point in strain-aged steels: The role of polar dislocations. Acta Mater. 2008, 56, 3002–3010. [Google Scholar] [CrossRef]
- Varadhan, S.; Beaudoin, A.J.; Fressengeas, C. Lattice incompatibility and strain-aging in single crystals. J. Mech. Phys. Solids 2009, 57, 1733–1748. [Google Scholar] [CrossRef]
- Gbemou, K.; Taupin, V.; Raulot, J.M.; Fressengeas, C. Building compact dislocation cores in an elasto-plastic model of dislocation fields. Int. J. Plast. 2016, 82, 241–259. [Google Scholar] [CrossRef]
- Zhang, X.; Acharya, A.; Walkington, N.J.; Bielak, J. A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations. J. Mech. Phys. Solids 2015, 84, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Chevy, J.; Fressengeas, C.; Lebyodkin, M.; Taupin, V.; Bastie, P.; Duval, P. Characterizing short range vs. long range spatial correlations in dislocation distributions. Acta Mater. 2010, 58, 1837–1849. [Google Scholar] [CrossRef]
- Fressengeas, C.; Beaudoin, A.J.; Entemeyer, D.; Lebedkina, T.; Lebyodkin, M.; Taupin, V. Dislocation transport and intermittency in the plasticity of crystalline solids. Phys. Rev. B 2009, 79, 014108. [Google Scholar] [CrossRef] [Green Version]
- Kossecka, E.; de Wit, R. Disclination kinematics. Arch. Mech. 1977, 29, 633–651. [Google Scholar]
- Kossecka, E.; de Wit, R. Disclination dynamics. Arch. Mech. 1977, 29, 749–767. [Google Scholar]
- Das, E.S.P.; Marcinkowski, M.J.; Armstrong, R.W.; de Wit, R. The movement of Volterra disclinations and the associated mechanical forces. Philos. Mag. 1973, 27, 369–391. [Google Scholar] [CrossRef]
- Pauli, W. Handbuch der Physik, Band XXIV, Teil 1, Vol. V, Part 1; Springer: Berlin, Germany, 1933. [Google Scholar]
- Schrödinger, E. The energy-impulse hypothesis of material waves. Ann. Phys. 1927, 82, 265. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Martin, R.M. Quantum-mechanical theory of stress and force. Phys. Rev. B 1985, 32, 3780–3791. [Google Scholar] [CrossRef]
- Jiang, B. The Least-Squares Finite Element Method; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Acharya, A.; Roy, A. Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. J. Mech. Phys. Solids 2006, 54, 1687–1710. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, J. Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi. Rend. R. Accad. Lincei 1901, 10, 57–60. [Google Scholar]
- Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity. Arch. Ratlat. Mech. Anal. 1962, 11, 415–448. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar elasticity. In Fracture; Liebowitz, H., Ed.; Academic Press: New York, NY, USA, 1968; Volume 2, pp. 621–729. [Google Scholar]
- Koiter, W.T. Couple stresses in the theory of elasticity. I II Proc. Ned. Akad. Wet. 1964, B, 17–44. [Google Scholar]
- Fressengeas, C.; Sun, X. On the theory of dislocations and generalized disclinations and its application to straight and stepped symmetrical tilt boundaries. J. Mech. Phys. Solids 2020, 143, 104092. [Google Scholar] [CrossRef]
- Eringen, A.C. A unified theory of thermomechanical materials. Int. J. Eng. Sci. 1966, 4, 179–202. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D.G.B. Nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A.C.; Kim, B.S. Relation between nonlocal elasticity and lattice dynamics. Cryst. Lattice Defects 1977, 7, 51–57. [Google Scholar]
- Eringen, A.C. Continuum Mechanics at the Atomic Scale; No. 77-SM-1; Princeton University: Princeton, NJ, USA, 1977. [Google Scholar]
- Eringen, A.C. Non Local Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Dingreville, R.; Hallil, A.; Berbenni, S. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses. J. Mech. Phys. Solids 2014, 72, 40–60. [Google Scholar] [CrossRef]
- Spearot, D.E.; Jacob, K.I.; McDowell, D.L. Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 2007, 23, 143–160. [Google Scholar] [CrossRef]
- Spearot, D.E.; Capolungo, L.; Qu, J.; Cherkaoui, M. On the elastic tensile deformation of <100> bicrystal interfaces in copper. Comput. Mater. Sci. 2008, 42, 57–67. [Google Scholar]
- Tschopp, M.A.; Tucker, G.J.; McDowell, D.L. Atomistic simulations of tension-compression asymmetry in dislocation nucleation for copper grain boundaries. Comput. Mater. Sci. 2008, 44, 351–362. [Google Scholar] [CrossRef]
- Upadhyay, M.; Capolungo, L.; Taupin, V.; Fressengeas, C. Elastic constitutive laws for incompatible crystalline media: The contributions of dislocations, disclinations and G-disclinations. Philos. Mag. 2013, 93, 794–832. [Google Scholar] [CrossRef]
- Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L. Nonlocal elasticity tensors in dislocation and disclination cores. J. Mech. Phys. Solids 2017, 100, 62–84. [Google Scholar] [CrossRef]
- Taupin, V.; Capolungo, L.; Fressengeas, C.; Upadhyay, M.; Beausir, B. A mesoscopic theory of dislocation and disclination fields for grain boundary-mediated crystal plasticity. Int. J. Solids Struct. 2015, 71, 277–290. [Google Scholar] [CrossRef]
- Mura, T. Continuous distributions of moving dislocations. Philos. Mag. 1963, 89, 843–857. [Google Scholar] [CrossRef]
- Kleman, M.; Friedel, J. Disclinations, dislocations, and continuous defects: A reappraisal. Rev. Mod. Phys. 2008, 80, 61–115. [Google Scholar] [CrossRef] [Green Version]
- Djaka, K.S.; Taupin, V.; Berbenni, S.; Fressengeas, C. A numerical spectral approach to solve the dislocation density transport equation. Model. Simul. Mater. Sci. Eng. 2015, 23, 065008. [Google Scholar] [CrossRef]
- Roy, A.; Acharya, A. Finite element approximation of field dislocation mechanics. J. Mech. Phys. Solids 2005, 53, 143–170. [Google Scholar] [CrossRef]
- Varadhan, S.; Beaudoin, A.J.; Acharya, A.; Fressengeas, C. Dislocation transport using an explicit Galerkin/least-squares formulation. Model. Simul. Mater. Sci. Eng. 2006, 14, 1245–1270. [Google Scholar] [CrossRef]
- Coleman, B.D.; Gurtin, M.E. Thermodynamics with internal state variables. J. Chem. Phys. 1967, 47, 597–613. [Google Scholar] [CrossRef]
- Djaka, K.S.; Villani, A.; Taupin, V.; Capolungo, L.; Berbenni, S. Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach. Comput. Methods Appl. Mech. Eng. 2017, 315, 921–942. [Google Scholar] [CrossRef] [Green Version]
- Fressengeas, C.; Taupin, V.; Capolungo, L. Continuous modeling of the structure of symmetric tilt boundaries. Int. J. Solids Struct. 2014, 51, 1434–1441. [Google Scholar] [CrossRef]
- Hasson, G.; Boos, J.Y.; Herbeuval, I.; Biscondi, M.; Goux, C. Theoretical and experimental determinations of grain-boundary structures and energies—Correlations with various experimental results. Surf. Sci. 1972, 31, 115–137. [Google Scholar] [CrossRef]
- Tschopp, M.A.; Spearot, D.E.; McDowell, D.L. Influence of grain boundary structure on dislocation nucleation in FCC metals. In Dislocations in Solids; Hirth, J.P., Ed.; North Holland Publishing: Amsterdam, The Netherlands, 2008; Volume 14, pp. 43–139. [Google Scholar]
- Bachurin, D.V.; Murzaev, R.T.; Nazarov, A.A. Atomistic computer and disclination simulation of [001] tilt boundaries in nickel and copper. Phys. Met. Metallogr. 2003, 96, 555–561. [Google Scholar]
- Gorkaya, T.; Molodov, D.A.; Gottstein, G. Stress-driven migration of symmetric <001> tilt grain boundaries in Al bicrystals. Acta Mater. 2009, 57, 5396–5405. [Google Scholar]
- Mompiou, F.; Caillard, D.; Legros, M. Grain boundary shear-migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 2009, 57, 2198–2209. [Google Scholar] [CrossRef]
- Tucker, G.J.; Tiwari, S.; Zimmerman, J.A.; McDowell, D.L. Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics. J. Mech. Phys. Solids 2012, 60, 471–486. [Google Scholar] [CrossRef]
- Zimmerman, J.A.; Bammann, D.J.; Gao, H. Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 2009, 46, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Adjaoud, O.; Marquardt, K.; Jahn, S. Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys. Chem. Miner. 2012, 39, 749–760. [Google Scholar] [CrossRef]
- Cordier, P.; Demouchy, S.; Beausir, B.; Taupin, V.; Barou, F.; Fressengeas, C. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 2014, 507, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Taupin, V.; Fressengeas, C.; Cordier, P. Continuous description of the atomic structure of a grain boundary using dislocations and generalized disclination density fields. Int. J. Plast. 2016, 77, 75–89. [Google Scholar] [CrossRef]
- Sun, X.Y.; Cordier, P.; Taupin, V.; Fressengeas, C.; Jahn, S. Continuous description of a grain boundary in forsterite from atomic scale simulations: The role of disclinations. Philos. Mag. A 2016, 96, 1757–1772. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Y.; Fressengeas, C.; Taupin, V.; Cordier, P.; Combe, N. Disconnections, dislocations and generalized disclinations in grain boundary ledges. Int. J. Plast. 2018, 104, 134–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fressengeas, C.; Taupin, V. Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundaries. Metals 2020, 10, 1517. https://doi.org/10.3390/met10111517
Fressengeas C, Taupin V. Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundaries. Metals. 2020; 10(11):1517. https://doi.org/10.3390/met10111517
Chicago/Turabian StyleFressengeas, Claude, and Vincent Taupin. 2020. "Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundaries" Metals 10, no. 11: 1517. https://doi.org/10.3390/met10111517
APA StyleFressengeas, C., & Taupin, V. (2020). Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundaries. Metals, 10(11), 1517. https://doi.org/10.3390/met10111517