Tensile and Fatigue Analysis Based on Microstructure and Strain Distribution for 7075 Aluminum FSW Joints
Abstract
:1. Introduction
2. Experiment
2.1. Specimen Preparation
2.2. Cross-Sectional Morphology
2.3. Electron Backscatter Diffraction Analysis
2.3.1. Grain Size of Each Region
2.3.2. Grain Boundary Angle Distribution
2.3.3. Orientation Distributions
2.4. Hardness Distribution
3. Tensile Results Analysis Based on DIC Technique
4. Fatigue Experimental Analysis
4.1. Fatigue Experimental Results
4.2. Strain Analysis
4.3. Crack Initiation and Propagation
4.3.1. Interrupted Fatigue Tests
4.3.2. Statics of Crack Initiation
4.3.3. Main Crack Growth Morphology
4.3.4. Crack Growth Rate of Different Regions
5. Conclusions
- 1.
- In the tensile tests, the FSW joints broke at TMAZ, where the hardness was the lowest and deformation was large. The high contents of small angle grain boundary and shear texture in TMAZ reduces the strength of material.
- 2.
- It is found that in continuous fatigue tests, most of the FSW joints did not fracture at TMAZ, which is the weak area for tensile tests. The fatigue failure mainly occurred at WNZ when the loading stress ratio was 0.1. Most specimens broke at BM when the stress ratio was −0.3. The weak area of FSW joint will change under different loading stress conditions. The fracture occurs at a concentration of strain.
- 3.
- Most fatigue cracks in WNZ initiated at the cluster of hardening particles. However, the cracks in BM mostly initiated at the pits. The influence of hardening particle cluster and pits on the fatigue crack initiation is different in different regions.
- 4.
- The crack growth rate of WNZ is faster than that of TMAZ. It should be related to the different propagation modes of WNZ and TMAZ.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
FSW | Friction stir welding |
DIC | Digital image correlation |
WNZ | Weld nugget zone |
TMAZ | Thermo-mechanically affected zone |
HAZ | Heat affected zone |
HHAZ | High hardness heat affected zone |
AS | Advancing side |
RS | Retreating side |
EBSD | Electron backscatter diffraction |
References
- Singh, V.P.; Patel, S.K.; Ranjan, A.; Kuriachen, B. Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: A critical review. J. Mater. Res. Technol. 2020, 9, 6217–6256. [Google Scholar] [CrossRef]
- Beaudet, J.; Rückert, G.; Cortial, F. Fatigue behavior of FSW high-yield strength steel welds for shipbuilding application. Weld. World 2019, 63, 1369–1378. [Google Scholar] [CrossRef]
- Gangwar, K.; Ramulu, M. Friction stir welding of titanium alloys: A review. Mater. Des. 2018, 141, 230–255. [Google Scholar] [CrossRef]
- Fei, X.; Wu, Z. Research of temperature and microstructure in friction stir welding of Q235 steel with laser-assisted heating. Results Phys. 2018, 11, 1048–1051. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; He, C.; Liu, F.; Yang, K.; Wang, C.; Wang, Q.; Liu, Y. Effect of texture and banded structure on the crack initiation mechanism of a friction stir welded magnesium alloy joint in very high cycle fatigue regime. Int. J. Fatigue 2020, 136, 105617. [Google Scholar] [CrossRef]
- Cho, J.-H.; Kim, W.J.; Gil Lee, C. Texture and microstructure evolution and mechanical properties during friction stir welding of extruded aluminum billets. Mater. Sci. Eng. A 2014, 597, 314–323. [Google Scholar] [CrossRef]
- Bjurenstedt, A.; Ghassemali, E.; Seifeddine, S.; Dahle, A.K. The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Mater. Sci. Eng. A 2019, 756, 502–507. [Google Scholar] [CrossRef]
- McCullough, R.; Jordon, J.; Allison, P.; Rushing, T.; Garcia, L. Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy. Int. J. Fatigue 2019, 119, 52–61. [Google Scholar] [CrossRef]
- Yan, L.; Fan, J. In-Situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy. Mater. Des. 2016, 110, 592–601. [Google Scholar] [CrossRef]
- Wu, Z.H.; Kou, H.C.; Chen, N.N.; Hua, K.; Zhang, M.Q.; Fan, J.K.; Tang, B.; Li, J.S. The effects of grain morphology and crystallographic orientation on fatigue crack initiation in a metastable beta titanium alloy Ti-7333. Mater. Sci. Eng. A 2020, 798, 140222. [Google Scholar] [CrossRef]
- DeBartolo, E.; Hillberry, B. Effects of constituent particle clusters on fatigue behavior of 2024-T3 aluminum alloy. Int. J. Fatigue 1998, 20, 727–735. [Google Scholar] [CrossRef]
- Merati, A. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3. Int. J. Fatigue 2005, 27, 33–44. [Google Scholar] [CrossRef]
- Liao, M. Probabilistic modeling of fatigue related microstructural parameters in aluminum alloys. Eng. Fract. Mech. 2009, 76, 668–680. [Google Scholar] [CrossRef]
- Sun, G.-Q.; Wang, C.; Wei, X.; Shang, D.; Chen, S. Study on small fatigue crack initiation and growth for friction stir welded joints. Mater. Sci. Eng. A 2019, 739, 71–85. [Google Scholar] [CrossRef]
- Shou, W.; Yi, D.; Liu, H.; Tang, C.; Shen, F.; Wang, B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch. Civ. Mech. Eng. 2016, 16, 304–312. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, B.; Zhai, T.; Li, S. The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy. Mater. Sci. Eng. A 2011, 528, 2017–2022. [Google Scholar] [CrossRef]
- Sivaraj, P.; Kanagarajan, D.; Balasubramanian, V. Fatigue crack growth behaviour of friction stir welded AA7075-T651 aluminium alloy joints. Trans. Nonferrous Met. Soc. China 2014, 24, 2459–2467. [Google Scholar] [CrossRef]
- Rajakumar, S.; Balasubramanian, V. Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints. Mater. Des. 2012, 34, 242–251. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, X.; Ma, M.; Zhang, J.; Liu, W.; Fu, R.; Xiang, S. A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Mater. Charact. 2017, 127, 41–52. [Google Scholar] [CrossRef]
- Deng, C.; Gao, R.; Gong, B.; Yin, T.; Liu, Y. Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy. Int. J. Fatigue 2017, 104, 283–292. [Google Scholar] [CrossRef]
- Besel, Y.; Besel, M.; Mercado, U.A.; Kakiuchi, T.; Hirata, T.; Uematsu, Y. Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy. Int. J. Fatigue 2017, 99, 151–162. [Google Scholar] [CrossRef]
- Deng, C.; Wang, H.; Gong, B.; Li, X.; Lei, Z. Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds. Int. J. Fatigue 2016, 83, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Besel, Y.; Besel, M.; Dietrich, E.; Wischek, J.; Mercado, U.A.; Kakiuchi, T.; Uematsu, Y. Heterogeneous local straining behavior under monotonic and cyclic loadings in a friction stir welded aluminum alloy. Int. J. Fatigue 2019, 125, 138–148. [Google Scholar] [CrossRef]
- Li, Y.-J.; Li, Q.; Wu, A.-P.; Ma, N.-X.; Wang, G.-Q.; Murakawa, H.; Yan, D.-Y.; Wu, H.-Q. Determination of local constitutive behavior and simulation on tensile test of 2219-T87 aluminum alloy GTAW joints. Trans. Nonferrous Met. Soc. China 2015, 25, 3072–3079. [Google Scholar] [CrossRef]
- Hatamleh, O. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints. Mater. Sci. Eng. A 2008, 492, 168–176. [Google Scholar] [CrossRef]
- Genevois, C.; Deschamps, A.; Vacher, P. Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds. Mater. Sci. Eng. A 2006, 415, 162–170. [Google Scholar] [CrossRef]
- Texier, D.; Atmani, F.; Bocher, P.; Nadeau, F.; Chen, J.; Zedan, Y.; Vanderesse, N.; Demers, V. Fatigue performances of FSW and GMAW aluminum alloys welded joints: Competition between microstructural and structural-contact-fretting crack initiation. Int. J. Fatigue 2018, 116, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Wu, C.; Gan, J.; Dong, J. Determination of the local constitutive properties of the welded steel joints using digital image correlation method. Constr. Build. Mater. 2018, 171, 485–492. [Google Scholar] [CrossRef]
- Corigliano, P.; Epasto, G.; Guglielmino, E.; Risitano, G. Fatigue analysis of marine welded joints by means of DIC and IR images during static and fatigue tests. Eng. Fract. Mech. 2017, 183, 26–38. [Google Scholar] [CrossRef]
- Malitckii, E.; Remes, H.; Lehto, P.; Bossuyt, S. Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method. J. Vis. Exp. 2019, e59134. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Amira, S.; Gougeon, P.; Chen, X.-G. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater. Charact. 2011, 62, 865–877. [Google Scholar] [CrossRef]
- Park, S.H.C. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scr. Mater. 2003, 49, 161–166. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, S.; Gong, J. Effect of non-axisymmetric arc on microstructure, texture and properties of variable polarity plasma arc welded 5A06 Al alloy. Mater. Charact. 2018, 139, 70–80. [Google Scholar] [CrossRef]
- Gemme, F.; Verreman, Y.; Dubourg, L.; Wanjara, P. Effect of welding parameters on microstructure and mechanical properties of AA7075-T6 friction stir welded joints. Fatigue Fract. Eng. Mater. Struct. 2011, 34, 877–886. [Google Scholar] [CrossRef]
- Fang, X.; Yan, W.; Gao, H.; Yue, Z.; Liu, J.; Wang, F. Finite element simulation of surface deformation of polycrystal with a rough surface under repeated load. Finite Elements Anal. Des. 2012, 60, 64–71. [Google Scholar] [CrossRef]
- Newman, J.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192. [Google Scholar] [CrossRef]
Zn | Mg | Cu | Mn | Ti | Cr | Fe | Si |
---|---|---|---|---|---|---|---|
5.59 | 2.40 | 1.49 | 0.10 | 0.072 | 0.23 | 0.20 | 0.225 |
Material | Ultimate Strength/MPa | Yield Strength/MPa | Elongation (%) |
---|---|---|---|
7075-T6 | 543 | 444 | 6 |
Type | Component | Base Material (BM) | Heat Affected Zone (HAZ) | Thermo-Mechanically Affected Zone (TMAZ) | Welded Nugget Zone (WNZ) |
---|---|---|---|---|---|
Deformation | Shear1 {001} <110> | 0.1 | 0.1 | 0.5 | 0.1 |
Shear3 {112} <110> | 0.4 | 0.3 | 1.9 | 1.3 | |
Copper {112} <111> | 1.1 | 0.1 | 0.4 | 0.2 | |
Brass {011} <211> | 0.2 | 2.2 | 0.6 | 0.8 | |
Goss {110} <001> | 1.7 | 0.1 | 0.8 | 0.5 | |
S {123} <634> | 2 | 0.2 | 0.7 | 0.9 | |
Recrystallization | Cube {001} <100> | 15 | 12.6 | 0.4 | 1 |
R {124} <211> | 0.5 | 0.6 | 0.6 | 0.8 |
No. | Stress Amplitude /MPa | Stress Ratio | Frequency /Hz | Fatigue Life /Cycle | Fracture Location | Whether Test Interrupted |
---|---|---|---|---|---|---|
B3 | 157.5 | 0.1 | 10 | 21,766 | WNZ | Continuous |
B2 | 144 | 0.1 | 10 | 34,446 | HAZ | Continuous |
B1 | 126 | 0.1 | 10 | 45,447 | BM | Continuous |
B7 | 112.5 | 0.1 | 10 | 56,901 | BM | Continuous |
B8 | 99 | 0.1 | 10 | 61,618 | WNZ | Continuous |
B9 | 90 | 0.1 | 10 | 12,4278 | TMAZ | Continuous |
B5 * | 157.5 | 0.1 | 10 | 28,453 | WNZ | Interrupted |
B7 * | 157.5 | 0.1 | 10 | 18,808 | WNZ | Interrupted |
B6 * | 144 | 0.1 | 10 | 25,053 | WNZ | Interrupted |
B13 * | 126 | 0.1 | 10 | 37,508 | WNZ | Interrupted |
C18 | 171 | −0.3 | 10 | 43,664 | BM | Continuous |
C2 | 157.5 | −0.3 | 10 | 44,005 | BM | Continuous |
C7 | 144 | −0.3 | 10 | 74,252 | BM | Continuous |
C3 | 126 | −0.3 | 10 | 101,671 | BM | Continuous |
C10 | 112.5 | −0.3 | 10 | 613,454 | BM | Continuous |
C18 | 99 | −0.3 | 10 | 895,225 | BM | Continuous |
C17 * | 171 | −0.3 | 10 | 102,749 | HAZ | Interrupted |
C12 * | 157.5 | −0.3 | 10 | 26,787 | WNZ | Interrupted |
C16 * | 144 | −0.3 | 10 | 93,741 | BM | Interrupted |
D1 ** | 157.5 | 0.1 | 10 | 41,880 | TMAZ | Interrupted |
D2 ** | 144 | 0.1 | 10 | 22,010 | TMAZ | Interrupted |
D3 ** | 126 | 0.1 | 10 | 56,969 | TMAZ | Interrupted |
Specimen | Stress Amplitude (MPa) | Maximum Stress (MPa) | Stress Ratio | Frequency (Hz) | Fatigue Life (Cycles) | Fracture Position |
---|---|---|---|---|---|---|
E1 | 144 | 320 | 0.1 | 10 | 3574 | WNZ |
E2 | 126 | 193.8 | −0.3 | 10 | 218,624 | BM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Wei, X.; Shang, D.; Chen, S.; Long, L.; Han, X. Tensile and Fatigue Analysis Based on Microstructure and Strain Distribution for 7075 Aluminum FSW Joints. Metals 2020, 10, 1610. https://doi.org/10.3390/met10121610
Sun G, Wei X, Shang D, Chen S, Long L, Han X. Tensile and Fatigue Analysis Based on Microstructure and Strain Distribution for 7075 Aluminum FSW Joints. Metals. 2020; 10(12):1610. https://doi.org/10.3390/met10121610
Chicago/Turabian StyleSun, Guoqin, Xinhai Wei, Deguang Shang, Shujun Chen, Lianchun Long, and Xiuquan Han. 2020. "Tensile and Fatigue Analysis Based on Microstructure and Strain Distribution for 7075 Aluminum FSW Joints" Metals 10, no. 12: 1610. https://doi.org/10.3390/met10121610
APA StyleSun, G., Wei, X., Shang, D., Chen, S., Long, L., & Han, X. (2020). Tensile and Fatigue Analysis Based on Microstructure and Strain Distribution for 7075 Aluminum FSW Joints. Metals, 10(12), 1610. https://doi.org/10.3390/met10121610