Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Fabrication
2.2. Compressive Test
3. Numerical Models
4. Results and Discussion
4.1. Effect on Strength and Stiffness
4.2. Effect on Energy Absorption
4.3. Coupling Effect
4.4. Deformation Modes
5. Conclusions
- (1)
- Aluminum foam filling leads to a significant increase in mechanical properties of Y-shape cored sandwich panels, with specific structural stiffness , normalized compressive stress , and specific energy absorption Wm increasing up to 2.68, 5.7, and 20 times that of the empty panel, respectively.
- (2)
- An obvious coupling effect of the foam-filled Y-shape cored sandwich panel was found. The stress–strain curve of the foam-filled sandwich panel was much higher than the sum stress–strain curve of the aluminum foam and empty Y-shape cored sandwich panel, tested separately.
- (3)
- The numerical results and experimental measurements agree well with each other on both stress–strain curves and deformation modes. The numerical and experimental results demonstrated that the coupling effect is caused by the sufficient lateral supports supplied by aluminum foam to the corrugated core and vertical leg of the Y-shaped core, which leads to a much more complicated deformation mode that may not occur in the empty panel. The coupling effect and excellent performance of aluminum foam caused the significant improvement of mechanical properties.
- (4)
- With dramatically increased specific strength, stiffness, and energy absorption, the present aluminum foam-filled Y-shape cored sandwich panel is suggested to be effective in load carrying and energy absorption applications.
Author Contributions
Funding
Conflicts of Interest
References
- Sienkiewicz, J.; Płatek, P.; Jiang, F.C.; Sun, X.J.; Rusinek, A. Investigations on the Mechanical Response of Gradient Lattice Structures Manufactured via SLM. Metals 2020, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Biffi, C.A.; Bassani, P.; Fiocchi, J.; Tuissi, A. Microstructural and Mechanical Response of NiTi Lattice 3D Structure Produced by Selective Laser Melting. Metals 2020, 10, 814. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Guglielmino, E. Impact Response of Aluminum Foam Sandwiches for Light-Weight Ship Structures. Metals 2011, 1, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Hu, Z.F.; Mo, F.; Wang, Y. Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method. Metals 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.G.; Hutchinson, J.W.; Fleck, N.A.; Ashby, M.F.; Wadley, H.N.G. The Topological Design of Multifunctional Cellular Metals. Prog. Mater. Sci. 2001, 46, 309–327. [Google Scholar] [CrossRef]
- Duarte, I.; Fiedler, T.; Krstulovic-Opara, L.; Vesenjak, M. Brief Review on Experimental and Computational Techniques for Characterization of Cellular Metals. Metals 2020, 10, 726. [Google Scholar] [CrossRef]
- Sun, X.J.; Jiang, F.C.; Wang, J.D. Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting. Metals 2020, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Zok, F.W.; Waltner, S.A.; Wei, Z.; Rathbun, H.J.; McMeeking, R.M.; Evans, A.G. A Protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores. Int. J. Solids Struct. 2004, 41, 6249–6271. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wang, B.; Ma, L.; Xiong, J.; Wu, L.Z. Response of Sandwich Structures with Pyramidal Truss Cores Under the Compression and Impact Loading. Compos. Struct. 2013, 100, 451–463. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.H.; Zhu, F.; Wu, G.Y.; Zhao, L.M. Response of Aluminium Corrugated Sandwich Panels Under Air Blast Loadings: Experiment and Numerical Simulation. Int. J. Impact. Eng. 2014, 65, 79–88. [Google Scholar] [CrossRef]
- Liu, J.X.; He, W.T.; Xie, D.; Tao, B. The Effect of Impactor Shape on the Low-Velocity Impact Behavior of Hybrid Corrugated Core Sandwich Structures. Compos. B Eng. 2017, 111, 315–331. [Google Scholar] [CrossRef]
- Gautam, R.; Idapalapati, S. Compressive Properties of Additively Manufactured Functionally Graded Kagome Lattice Structure. Metals 2019, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.C.; Yang, X.H.; Li, P.; Huang, G.Y.; Feng, S.S.; Shen, C.Q.; Lu, T.J. Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation. Prog. Mater. Sci. 2015, 74, 332–400. [Google Scholar] [CrossRef]
- Stanczak, M.; Fras, T.; Blanc, L.; Pawlowski, P.; Rusinek, A. Blast-Induced Compression of a Thin-Walled Aluminum Honeycomb Structure—Experiment and Modeling. Metals 2019, 9, 1350. [Google Scholar] [CrossRef] [Green Version]
- Vettorello, A.; Campo, G.A.; Goldoni, G.; Giacalone, M. Numerical-Experimental Correlation of Dynamic Test of a Honeycomb Impact Attenuator for a Formula SAE Vehicle. Metals 2020, 10, 652. [Google Scholar] [CrossRef]
- Movahedi, N.; Linul, E.; Marsavina, L. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams. J. Mater. Eng. Perform. 2018, 27, 99–108. [Google Scholar] [CrossRef]
- Kuwahara, T.; Osaka, T.; Saito, M.; Suzuki, S. Compressive Properties of A2024 Alloy Foam Fabricated through a Melt Route and a Semi-Solid Route. Metals 2019, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Zhao, L.M. Blast Resistance and Energy Absorption of Sandwich Panels with Layered Gradient Metallic Foam Cores. J. Sandw. Struct. Mater. 2019, 21, 464–482. [Google Scholar] [CrossRef]
- Pinto, S.C.; Marques, P.A.; Vesenjak, M.; Vicente, R.; Godinho, L.; Krstulović-Opara, L.; Duarte, I. Mechanical, Thermal, and Acoustic Properties of Aluminum Foams Impregnated with Epoxy/Graphene Oxide Nanocomposites. Metals 2019, 9, 1214. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.C.; Zhang, Z.; Zhao, W.M.; Li, C.; Ding, J.; Liu, C.X.; Liu, Y.C. Acoustic Properties of Closed-Cell Aluminum Foams with Different Macrostructures. J. Mater. Sci. Technol. 2017, 33, 1227–1234. [Google Scholar] [CrossRef]
- Umponpanarat, P.; Wansom, S. Thermal Conductivity and Strength of Foamed Gypsum Formulated Using Aluminum Sulfate and Sodium Bicarbonate as Gas-Producing Additives. Mater. Struct. 2016, 49, 1115–1126. [Google Scholar] [CrossRef]
- Taherishargh, M.; Linul, E.; Broxtermann, S.; Fiedler, T. The Mechanical Properties of Expanded Perlite-Aluminium Syntactic Foam at Elevated Temperatures. J. Alloys Compd. 2018, 737, 590–596. [Google Scholar] [CrossRef]
- Jeon, I.; Asahina, T. The Effect of Structural Defects on the Compressive Behavior of Closed-Cell Al Foam. Acta Mater. 2005, 53, 3415–3423. [Google Scholar] [CrossRef]
- Yang, D.H.; Zhang, Z.C.; Chen, X.G.; Han, X.; Xu, T.; Li, X.L.; Ding, J.; Liu, H.F.; Xia, X.C.; Gao, Y.G.; et al. Quasi-Static Compression Deformation and Energy Absorption Characteristics of Basalt Fiber-Containing Closed-Cell Aluminum Foam. Metals 2020, 10, 921. [Google Scholar] [CrossRef]
- Yan, L.L.; Yu, B.; Han, B.; Chen, C.Q.; Zhang, Q.C.; Lu, T.J. Compressive Strength and Energy Absorption of Sandwich Panels with Aluminum Foam-Filled Corrugated Cores. Compos. Sci. Technol. 2013, 86, 142–148. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, H.; Yan, L.L.; Wang, J.F.; Han, Y.J.; Zheng, L.; Qu, S.B. A Microwave Absorption/Transmission Integrated Sandwich Structure Based on Composite Corrugation Channel: Design, Fabrication and Experiment. Compos. Struct. 2019, 229, 111425. [Google Scholar] [CrossRef]
- Su, P.B.; Han, B.; Yang, M.; Wei, Z.H.; Zhao, Z.Y.; Zhang, Q.C.; Lu, T.J. Axial Compressive Collapse of Ultralight Corrugated Sandwich Cylindrical Shells. Mater. Design. 2018, 160, 325–337. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Zhou, T.Y.; Wang, H.; Li, Y.; Liu, J.; Zhang, P. Numerical Investigation on the Dynamic Response of Foam-Filled Corrugated Core Sandwich Panels Subjected to Air Blast Loading. J. Sandw. Struct. Mater. 2019, 21, 838–864. [Google Scholar] [CrossRef]
- Yan, L.L.; Han, B.; Yu, B.; Chen, C.Q.; Zhang, Q.C.; Lu, T.J. Three-Point Bending of Sandwich Beams with Aluminum Foam-Filled Corrugated Cores. Mater. Design. 2014, 60, 510–519. [Google Scholar] [CrossRef]
- Yan, L.L.; Yu, B.; Han, B.; Zhang, Q.C.; Lu, T.J.; Lu, B.H. Effects of Aluminum Foam Filling on the Low-Velocity Impact Response of Sandwich Panels with Corrugated Cores. J. Sandw. Struct. Mater. 2020, 22, 929–947. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, Y.S.; Liu, J.; Li, Y.; Zhang, C.Z.; Hou, H.L.; Wang, C.M. Experimental Study on the Dynamic Response of Foam-Filled Corrugated Core Sandwich Panels Subjected to Air Blast Loading. Compos. B Eng. 2016, 105, 67–81. [Google Scholar] [CrossRef]
- Yan, L.L.; Zhao, Z.Y.; Han, B.; Lu, T.J.; Lu, B.H. Tube Enhanced Foam: A Novel Way for Aluminum Foam Enhancement. Mater. Lett. 2018, 227, 70–73. [Google Scholar] [CrossRef]
- Yan, L.L.; Jiang, W.; Zhang, C.; Zhang, Y.W.; He, Z.H.; Zhu, K.Y.; Chen, N.; Zhang, W.B.; Han, B.; Zheng, X.T. Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymethacrylimide Foam. Polymers 2019, 11, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.W.; Yan, L.L.; Zhang, W.B.; Su, P.B.; Han, B.; Guo, S.X. Metallic Tube-reinforced Aluminum Honeycombs: Compressive and Bending Performances. Compos. B Eng. 2019, 171, 192–203. [Google Scholar] [CrossRef]
- Alia, R.A.; Cantwell, W.J.; Langdon, G.S.; Yuen, S.C.K.; Nurick, G.N. The Energy-Absorbing Characteristics of Composite Tube-reinforced Foam Structures. Compos. B Eng. 2014, 61, 127–135. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, Z.; Cantwell, W.J. The Energy-Absorbing Behaviour of Composite Tube-reinforced Foams. Compos. B Eng. 2018, 139, 227–237. [Google Scholar] [CrossRef]
- Rubino, V.; Deshpande, V.S.; Fleck, N.A. The Three-point Bending of Y-Frame and Corrugated Core Sandwich Beams. Int. J. Mech. Sci. 2010, 52, 485–494. [Google Scholar] [CrossRef]
- Rubino, V.; Deshpande, V.S.; Fleck, N.A. The Dynamic Response of End-Clamped Sandwich Beams with a Y-Frame or Corrugated Core. Int. J. Impact. Eng. 2008, 35, 829–844. [Google Scholar] [CrossRef]
- Rubino, V.; Deshpande, V.S.; Fleck, N.A. The Dynamic Response of Clamped Rectangular Y-Frame and Corrugated Core Sandwich Plates. Eur. J. Mech. A Solids 2009, 28, 14–24. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, L.; Deshpande, V.S.; Fleck, N.A. The Low Velocity Impact Response of Sandwich Beams with a Corrugated Core or a Y-Frame Core. Int. J. Mech. Sci. 2015, 91, 71–80. [Google Scholar] [CrossRef]
- St-Pierre, L.; Deshpande, V.S.; Fleck, N.A. The Dynamic Indentation Response of Sandwich Panels with a Corrugated or Y-Frame Core. Int. J. Mech. Sci. 2015, 92, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Liu, J.Y.; Mei, J.; Huang, W. Investigation on Manufacturing and Mechanical Behavior of All-Composite Sandwich Structure with Y-Shaped Cores. Compos. Sci. Technol. 2018, 159, 87–102. [Google Scholar] [CrossRef]
- Liu, J.L.; He, Z.P.; Liu, J.Y.; Mei, J.; Huang, W. Bending Response and Failure Mechanism of Composite Sandwich Panel with Y-Frame Core. Thin Wall. Struct. 2019, 145, 106387. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Jiang, W.M.; Liu, J.L. Mechanical Response of a Novel Composite Y-Frame Core Sandwich Panel Under Shear Loading. Compos. Struct. 2019, 224, 111064. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Han, Y.J.; Chen, C.Q.; Lu, T.J. Ultralight X-Type Lattice Sandwich Structure (I): Concept, Fabrication and Experimental Characterization. Sci. China Ser. E Technol. Sci. 2009, 52, 2147–2154. [Google Scholar] [CrossRef]
- Yang, D.H.; Hur, B.Y.; He, D.P.; Yang, S.R. Effect of decomposition properties of titanium hydride on the foaming process and pore structures of Al alloy melt foam. Mater. Sci. Eng. A Struct. 2007, 445, 415–426. [Google Scholar] [CrossRef]
- Stout, M.G.; Follansbee, P.S. Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel. J. Eng. Mater Technol. 1986, 108, 344–353. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. Isotropic Constitutive Models for Metallic Foams. J. Mech. Phys. Solids 2000, 48, 1253–1283. [Google Scholar] [CrossRef] [Green Version]
Specimens | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exp. | Exp. | Num. | Exp. | Num. | Exp. | Num. | Exp. | Num. | |||
Empty-1 | 0.41 | 0.036 | 3083 | 0.78 | 0.93 | 0.10 | 0.12 | 0.11 | 0.097 | 0.39 | 0.34 |
Empty-2 | 0.82 | 0.072 | 2083 | 2.89 | 3.56 | 0.19 | 0.24 | 0.35 | 0.42 | 0.62 | 0.74 |
Filled-1 | 0.41 | 0.115 | 5609 | 13.78 | 16.29 | 0.57 | 0.67 | 7.08 | 8.27 | 7.79 | 9.10 |
Filled-2 | 0.82 | 0.148 | 5581 | 17.40 | 20.48 | 0.56 | 0.66 | 8.07 | 11.06 | 6.90 | 9.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Su, P.; Han, Y.; Han, B. Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel. Metals 2020, 10, 1670. https://doi.org/10.3390/met10121670
Yan L, Su P, Han Y, Han B. Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel. Metals. 2020; 10(12):1670. https://doi.org/10.3390/met10121670
Chicago/Turabian StyleYan, Leilei, Pengbo Su, Yagang Han, and Bin Han. 2020. "Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel" Metals 10, no. 12: 1670. https://doi.org/10.3390/met10121670
APA StyleYan, L., Su, P., Han, Y., & Han, B. (2020). Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel. Metals, 10(12), 1670. https://doi.org/10.3390/met10121670