Dry Sliding Tribological Properties of a Hard Anodized AA6082 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Characterization
3.2. Wear Behavior
3.3. Further Insights of the Wear Tracks
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hatch, J.E. Aluminum: Properties and Physical Metallurgy, 1st ed.; American Society for Metals: Cleveland, OH, USA, 1984. [Google Scholar]
- Troeger, L.P.; Starke, E.A., Jr. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mat. Sci. Eng. A 2000, 277, 102–113. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Jansen, J.; Zandbergen, H.W. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 2003, 51, 789–796. [Google Scholar] [CrossRef]
- Abdu, M.T.; Soliman, M.S.; El-Danaf, E.A.; Almajid, A.A.; Mohamed, F.A. Creep characteristics and microstructure in nano-particle strengthened AA6082. Mat. Sci. Eng. A 2012, 531, 35–44. [Google Scholar] [CrossRef]
- Engler, O.; Hirsch, J. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—A review. Mat. Sci. Eng. A 2002, 336, 249–262. [Google Scholar] [CrossRef]
- De Giorgi, M.; Scialpi, A.; Panella, F.W.; De Filippis, L.A.C. Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints. J. Mech. Sci. Technol. 2009, 23, 26–35. [Google Scholar] [CrossRef]
- Patil, H.S.; Soman, S.N. Experimental study on the effect of welding speed and tool pin profiles on AA6082-O aluminum friction stir welded butt joints. Int. J. Eng. Sci. Technol. 2010, 2, 268–275. [Google Scholar] [CrossRef]
- Abdulstaar, M.; Mhaede, M.; Wagner, L. Pre-corrosion and surface treatments effects on the fatigue life of AA6082 T6. Adv. Eng. Mater. 2013, 15, 1002–1006. [Google Scholar] [CrossRef]
- Hoar, T.P.; Mott, N.F. A mechanism for the formation of porous anodic oxide films on aluminum. Phys. Chem. Solids. 1959, 9, 97–99. [Google Scholar] [CrossRef]
- Thompson, G.E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films 1997, 297, 192–201. [Google Scholar] [CrossRef]
- Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. Conditions for Fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc. 2001, 148, B152–B156. [Google Scholar] [CrossRef]
- Thompson, G.E.; Furneaux, R.C.; Wood, G.C.; Richardson, J.A.; Goode, J.S. Nucleation and growth of porous anodic films on aluminum. Nature 1978, 272, 433–435. [Google Scholar] [CrossRef]
- Aerts, T.; Dimogerontakis, T.H.; De Graeve, I.; Fransaer, J.; Terryn, H. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surf. Coat. Technol. 2007, 201, 7310–7317. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.H.; Lee, W.; Cho, S.J.; Hahn, J.H.; Ahn, H.S. Tribological properties of nanoporous anodic aluminum oxide film. Surf. Coat. Technol. 2010, 205, 1431–1437. [Google Scholar] [CrossRef]
- Hu, N.-N.; Ge, S.-H.; Fang, L. Tribological properties of nano-porous anodic aluminum oxide template. J. Cent. South Univ. Technol. 2011, 18, 1004–1008. [Google Scholar] [CrossRef]
- Apachitei, L.E.F.; Duszczyk, J.; Katgerman, L. Vickers microhardness of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. Surf. Coat. Techol. 2003, 165, 309–315. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, H.; Luo, P.; Luo, S.; Chen, J.; Kuang, Y. Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid. Surf. Coat. Technol. 2006, 201, 513–518. [Google Scholar] [CrossRef]
- Sulka, G.D.; Parkola, K.G. Anodizing potential influence on well-ordered nanostructures formed by anodisation of aluminum in sulphuric acid. Thin Solid Films 2006, 515, 338–345. [Google Scholar] [CrossRef]
- Moutarlier, V.; Gigandet, M.P.; Pagetti, J.; Normand, B. Influence of oxalic acid addition to chromic acid on the anodising of Al 2024 alloy. Surf. Coat. Technol. 2004, 182, 117–123. [Google Scholar] [CrossRef]
- Bensalah, W.; Elleuch, K.; Feki, M.; De-Petris Wery, M.; Ayedi, H.F. Optimization of anodic layer properties on aluminum in mixed oxalic/sulphuric acid bath using statistical experimental methods. Surf. Coat. Technol. 2007, 201, 7855–7864. [Google Scholar] [CrossRef]
- Bensalah, W.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H.F. Comparative study of mechanical and tribological properties of alumina coatings formed on aluminum in various conditions. Mater. Des. 2009, 30, 3731–3737. [Google Scholar] [CrossRef]
- Maejima, M.; Saruwataria, U.K.; Takaya, M. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds. Surf. Coat. Technol. 2000, 132, 105–110. [Google Scholar] [CrossRef]
- Takaya, M.; Hashimoto, K.; Toda, Y.; Maejima, M. Novel tribological properties of anodic oxide coating of aluminum impregnated with iodine compound. Surf. Coat. Technol. 2003, 169, 160–162. [Google Scholar] [CrossRef]
- Riddar, F.; Kassman Rudolphi, Å. Comparison of friction performance of four anodized aluminum surfaces for use in a clutch actuator. Wear 2014, 319, 227–233. [Google Scholar] [CrossRef]
- Wernick, S.; Pinner, R.; Sheasby, P.G. The Surface Treatment and Finishing of Aluminium and its Alloys, 6th ed.; Finishing Publications Ltd.: Teddington, UK, 1987. [Google Scholar]
- Riddar, F.; Kassman Rudolphi, Å. Friction, wear and surface damage mechanisms of pneumatic clutch actuators. Wear 2013, 305, 36–44. [Google Scholar] [CrossRef]
- Lee, G.-S.; Choi, J.H.; Choi, Y.C.; Bu, S.D.; Lee, Y.-Z. Tribological effects of pores on an anodized Al alloy surface as lubricant reservoir. Curr. Appl. Phys. 2011, 11, S182–S186. [Google Scholar] [CrossRef]
- Liew, K.W.; Chia, S.Y.; Kok, C.K.; Low, K.O. Evaluation on tribological design coatings of Al2O3, Ni–P–PTFE and MoS2 on aluminum alloy 7075 under oil lubrication. Mater. Des. 2013, 48, 77–84. [Google Scholar] [CrossRef]
- Tao, X.; Jianmin, C.; Jiazheng, Z.; Hongxi, D. The pore-enlargement and self-lubrication treatment of anodic oxide film of aluminum. Wear 1996, 196, 214–218. [Google Scholar] [CrossRef]
- Skeldom, P.; Wang, H.W.; Thompson, G.E. Formation and characterization of self-lubricating MoS2 precursor films on anodized aluminum. Wear 1997, 206, 187–196. [Google Scholar] [CrossRef]
- Tu, J.P.; Jiang, C.X.; Guo, S.Y.; Zhao, X.B.; Fu, M.F. Tribological properties of aligned film of amorphous carbon nanorods on AAO membrane in different environments. Wear 2005, 259, 759–764. [Google Scholar] [CrossRef]
- Guezmil, M.; Bensalah, W.; Khalladi, A.; Elleuch, K.; De Petris-Wery, M.; Ayedi, H.F. Friction coefficient and microhardness of anodized aluminum alloys under different elaboration conditions. Trans. Nonferrous Met. Soc. China 2015, 25, 1950–1960. [Google Scholar] [CrossRef]
- Picas, J.A.; Forn, A.; Ruperez, E.; Baile, M.T.; Martin, E. Hard Anodizing of aluminum matrix composite A6061/(Al2O3)p for wear and corrosion resistance improvement. Plasma Processes Polym. 2007, 4, S579–S583. [Google Scholar] [CrossRef]
- Sieber, M.; Mehner, T.; Dietrich, D.; Alisch, G.; Nickel, D.; Meyer, D.; Scharf, I.; Lampke, T. Wear-resistant coatings on aluminum produced by plasma anodising—A correlation of wear properties, microstructure, phase composition and distribution. Surf. Coat. Technol. 2014, 240, 96–102. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Malayoglu, U.; Shrestha, S. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy. Mat. Sci. Eng. A 2011, 528, 7451–7460. [Google Scholar] [CrossRef]
- Ovundur, M.; Muhaffel, F.; Cimenoglu, H. Characterization and tribological properties of hard anodized and micro arc oxidized 5754 quality aluminum alloy. Tribol. Ind. 2015, 37, 55–59. [Google Scholar]
- Tsyntsaru, N.; Kavas, B.; Sort, J.; Urgen, M.; Celis, J.-P. Mechanical and frictional behaviour of nano-porous anodized aluminum. Mater. Chem. Phys. 2014, 148, 887–895. [Google Scholar] [CrossRef]
- Vengatesh, P.; Kulandainathan, M.A. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 2015, 7, 1516–1526. [Google Scholar] [CrossRef]
- Dejun, K.; Jinchun, W.; Hao, L. Friction and wear performances of 7475 aluminium alloy after anodic oxidation. Rare Met. Mater. Eng. 2016, 45, 1122–1127. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wei, G.; Yu, Y.; Guo, C.; Jiang, L. Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechanical properties. Surf. Interface 2018, 13, 46–50. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Wang, B.; Song, Q.; Wan, Y.; Chen, L. Surface characterization and tribological performance of anodizing micro-textured aluminum-silicon alloys. Materials 2019, 12, 1862. [Google Scholar] [CrossRef] [Green Version]
- Benea, L.; Dumitrascu, V. Enhancement in sustained friction and wear resistance of nanoporous aluminum oxide films obtained by controlled electrochemical oxidation process. RSC Adv. 2019, 9, 25056. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kinju, T.; Matsuo, Y. Method for surface treatment of aluminum or aluminum alloy. Japanese Patent N. EP1207220, 16 January 2008. [Google Scholar]
- Bhushan, B. Modern Tribology Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- ASTM G99-05(2010). Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Santecchia, E.; Cabibbo, M.; Hamouda, A.M.S.; Musharavati, F.; Popelka, A.; Spigarelli, S. Investigation of the temperature-related wear performance of hard nanostructured coatings deposited on a S600 high speed steel. Metals 2019, 9, 332. [Google Scholar] [CrossRef] [Green Version]
- Perez-Unsueta, A.J.; Beynon, J.H.; Gee, M.G. The effect of surrounding atmosphere on the sliding wear of alumina. Wear 1991, 146, 179. [Google Scholar] [CrossRef]
- Sasaki, S. The effects of the surrounding atmosphere on the friction and wear of alumina, zirconia, silicon carbide and silicon nitride. Wear 1989, 134, 185–200. [Google Scholar] [CrossRef]
- Gee, M.G. The formation of aluminum hydroxide in the sliding wear of alumina. Wear 1992, 153, 201–227. [Google Scholar] [CrossRef]
- Gee, M.G.; Jennett, N.M. High resolution characterisation of tribo-chemical films on alumina. Wear 1995, 193, 133–145. [Google Scholar] [CrossRef]
- Lee, G.-S.; Cho, D.-H.; Kim, J.-S.; Kim, H.S.; Choi, Y.C.; Bu, S.D.; Lee, Y.-Z. Lubricating layer formed on porous anodic alumina template due to pore effect at water lubricated sliding and its properties. Thin Solid Films 2013, 521, 3–6. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Guezmil, M.; Bensalah, W.; Khalladi, A.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H.F. Effect of test parameters on the friction behaviour of anodized aluminium alloy. Int. Schol. Res. Notices 2014, 2014, 795745. [Google Scholar] [CrossRef]
Name | Al2O3 Thickness |
---|---|
GHA10 | 10 μm |
GHA50 | 50 μm |
GHA100 | 100 μm |
Sample | Microhardness (HV) |
---|---|
GHA10 | 310 ± 30 |
GHA50 | 260 ± 20 |
GHA100 | 350 ± 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santecchia, E.; Cabibbo, M.; Hamouda, A.M.S.; Musharavati, F.; Popelka, A.; Spigarelli, S. Dry Sliding Tribological Properties of a Hard Anodized AA6082 Aluminum Alloy. Metals 2020, 10, 207. https://doi.org/10.3390/met10020207
Santecchia E, Cabibbo M, Hamouda AMS, Musharavati F, Popelka A, Spigarelli S. Dry Sliding Tribological Properties of a Hard Anodized AA6082 Aluminum Alloy. Metals. 2020; 10(2):207. https://doi.org/10.3390/met10020207
Chicago/Turabian StyleSantecchia, Eleonora, Marcello Cabibbo, Abdel Magid Salem Hamouda, Farayi Musharavati, Anton Popelka, and Stefano Spigarelli. 2020. "Dry Sliding Tribological Properties of a Hard Anodized AA6082 Aluminum Alloy" Metals 10, no. 2: 207. https://doi.org/10.3390/met10020207
APA StyleSantecchia, E., Cabibbo, M., Hamouda, A. M. S., Musharavati, F., Popelka, A., & Spigarelli, S. (2020). Dry Sliding Tribological Properties of a Hard Anodized AA6082 Aluminum Alloy. Metals, 10(2), 207. https://doi.org/10.3390/met10020207