Casting and Constitutive Hot Flow Behavior of Medium-Mn Automotive Steel with Nb as Microalloying
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermodynamic Calculations
3.2. Microstructural Characterization of As-Cast and Homogenized Samples
3.3. The High-Temperature Flow Stress Behavior
4. Conclusions
- (1)
- We found that the microstructure of the medium-Mn steel with 0.1 wt.% Nb consisted of lath martensite, ferrite, and small retained austenite in the as-cast condition, whereas, in the homogenized condition, the microstructure was lath martensite and retained austenite. The volume fraction of retained austenite in the as-cast and homogenized conditions was 2 and 20%, respectively.
- (2)
- The thermodynamic simulation of the equilibrium diagram allowed the selection of homogenization parameters and the predicted precipitation of carbides of the type M23C6 and/or NbC. Experimental observations confirmed the existence of these carbides in the homogenized condition along the previous austenite grain boundaries.
- (3)
- We found that Nb delayed recrystallization during hot plastic deformation as the stress–strain curves did not show any peak stress and only showed a steady-state flow stress value after reaching the highest stress. These results were associated with the NbC precipitates, as well as Nb in solid solution.
- (4)
- The constitutive equation established by the modified Johnson–Cook model and its corresponding parameters were calculated by fitting the experimental data, and the accuracy of the constitutive equation obtained was verified by using the correlation coefficient (R) and mean absolute relative error (MARE), which were 0.9962 and 1.42%, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abey, A. Metallic Material Trends in the North American Light Vehicle. In Proceedings of the Great Designs in Steel Seminars, Livonia, MI, USA, 13 May 2015. [Google Scholar]
- Singh, S.; Nanda, T. A Review: Production of Third Generation Advance High Strength Steels. IJSRD 2014, 2, 388–392. [Google Scholar]
- Cai, M.; Di, H. Advanced High Strength Steels and Their Processes. In Rolling of Advanced High Strength Steels: Theory, Simulation and Practice, 1st ed.; Zhao, J., Jiang, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–25. [Google Scholar]
- Fonstein, N. Evolution of Strength of Automotive Steels to Meet Customer Challenges. In Advanced High Strength Sheet Steels; Springer: Berlin, Germany, 2015; pp. 1–14. [Google Scholar]
- Fonstein, N. Candidates for the Third Generation: Medium Mn Steels. In Advanced High Strength Sheet Steels; Springer: Berlin, Germany, 2015; pp. 297–325. [Google Scholar]
- Shao, C.; Hui, W.; Zhang, Y.; Zhao, X.; Weng, Y. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater. Sci. Eng. A 2017, 682, 45–53. [Google Scholar] [CrossRef]
- Bansal, G.K.; Madhukar, D.A.; Chandan, A.K.; Ashok, K.; Mandal, G.K.; Sirvastava, V.C. On the intercritical annealing parameters and ensuing mechanical properties of low-carbon medium-Mn steel. Mater. Sci. Eng. A 2018, 733, 246–256. [Google Scholar] [CrossRef]
- Li, Z.C.; Ding, H.; Misra, R.D.K.; Cai, Z.H. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater. Sci. Eng. A 2017, 679, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; De Cooman, B.C. Tensile Behavior of Intercritically Annealed Ultra-Fine Grained 8% Mn Multi-Phase Steel. Steel Res. Int. 2015, 86, 1170–1178. [Google Scholar] [CrossRef]
- Latypov, M.I.; Shin, S.; Cooman, B.C.D.; Kim, H.S. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel. Acta Mater. 2016, 108, 219–228. [Google Scholar] [CrossRef]
- Suh, D.-W.; Kim, S.-J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges. Scr. Mater. 2017, 126, 63–67. [Google Scholar] [CrossRef]
- Haijun Pan, H.D.M.C. Microstructural evolution and precipitation behavior of the warm-rolled medium Mn steels containing Nb or Nb-Mo during intercritical annealing. Mater. Sci. Eng. A 2018, 736, 375–382. [Google Scholar]
- Hu, J.; Du, L.-X.; Dong, Y.; Meng, Q.-W.; Misra, R.D.K. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel. Mater. Charact. 2019, 152, 21–35. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.-K.; Lee, S.; Lee, K.; Cooman, B.C.D. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater. Sci. Eng. A 2017, 706, 1–14. [Google Scholar] [CrossRef]
- Yan, N.; Di, H.-S.; Huang, H.-Q.; Misra, R.D.K.; Deng, Y.-G. Hot Deformation Behavior and Processing Mapps of Medium Manganese TRIP Steel. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 1021–1031. [Google Scholar] [CrossRef] [Green Version]
- Klinkenberg, C.; Varghese, A.; Heering, C.; Lamukhina, O.; Grafe, U.; Tokmakov, K. 3rd Generation AHSS by Thin Slab Technology. Mater. Sci. Forum 2018, 941, 627–632. [Google Scholar] [CrossRef]
- Steineder, K.; Dikovits, M.; Beal, C.; Sommitsch, C.; Krizan, D.; Schneider, R. Hot deformation behavior of a 3rd generation advenced high strength steel with a Medium-Mn content. Mater. Sci. Forum 2015, 651–653, 120–125. [Google Scholar]
- Na, H.-S.; Kim, B.-S.; Lee, S.-S.; Kang, C.Y. Thermodynamic Alloy Design of High Strength and Toughness in 300 mm Thick Pressure Vessel Wall of 1.25Cr-0.5Mo Steel. Metals 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, A.; Moutinho, I.; Oliveira, I.; Ferreira, A.; Alves, D.; Santos, D.B. Ultrafinegrained Microstructure in a Medium Manganese Steel after Warm Rolling without Intercritical Annealing. ISIJ Int. 2017, 57, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Djurovic, D.; Hallstedt, B.; Appen, J.; Dronskowski, R. Thermodynamic assessment of the Fe–Mn–C system. Calphad 2011, 35, 479–491. [Google Scholar] [CrossRef]
- Zheng, W.-S.; Lu, X.-G.; He, Y.-L.; Li, L. Thermodynamic modeling of Fe-C-Mn-Si alloys. J. Iron Steel Res. Int. 2017, 24, 190–197. [Google Scholar] [CrossRef]
- Young, R.A. The Rietveld Method; Oxford University Press: Oxford, UK, 1993; p. 298. [Google Scholar]
- Golański, G. Mechanical properties of GX12CrMoVNbN91 (GP91) cast steel after different heat treatments. Mater. Sci. 2012, 48, 384–391. [Google Scholar] [CrossRef]
- Zajac, S.; Schwinn, V.; Tacke, K.-H. Characterisation and Quantification of Complex Bainitic Microstructures in High and Ultra-High Strength Linepipe Steels. Mater. Sci. Forum 2005, 500–501, 387–394. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, S.R. 9-The Tempering of Martensite. In Steels, 3rd ed.; Bhadeshia, H.K.D.H., Honeycombe, S.R., Eds.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 183–208. [Google Scholar]
- Wei, H.-L.; Liu, G.-Q. Effect of Nb and C on the hot flow behavior of Nb microalloyed steels. Mater. Des. 2014, 56, 437–444. [Google Scholar] [CrossRef]
- Bao, S.; Zhao, G.; Yu, C.; Chang, Q.; Ye, C.; Mao, X. Recrystallization behavior of a Nb-microalloyed steel during hot compression. Appl. Math. Model. 2011, 35, 3268–3275. [Google Scholar] [CrossRef]
- Xiao, F.-R.; Cao, Y.-B.; Qiao, G.-Y.; Zhang, X.-B.; Liao, B. Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels. J. Iron Steel Res. Int. 2012, 19, 52–56. [Google Scholar] [CrossRef]
- Speer, J.G.; Araujo, A.L.; Matlock, D.K.; Moor, E. Nb-Microalloying in Next-Generation Flat-Rolled Steels: An Overview. Mater. Sci. Forum 2016, 879, 1834–1840. [Google Scholar] [CrossRef]
- He, A.; Xie, G.; Zhang, H.; Wang, X. A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel. Mater. Des. 2013, 52, 677–685. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda Vázquez, P.J.; Pacheco-Cedeño, J.S.; Ramos-Azpeitia, M.O.; Garnica-González, P.; Garibay-Febles, V.; Moreno-Palmerin, J.; Cruz-Rivera, J.d.J.; Hernández-Rivera, J.L. Casting and Constitutive Hot Flow Behavior of Medium-Mn Automotive Steel with Nb as Microalloying. Metals 2020, 10, 206. https://doi.org/10.3390/met10020206
Cerda Vázquez PJ, Pacheco-Cedeño JS, Ramos-Azpeitia MO, Garnica-González P, Garibay-Febles V, Moreno-Palmerin J, Cruz-Rivera JdJ, Hernández-Rivera JL. Casting and Constitutive Hot Flow Behavior of Medium-Mn Automotive Steel with Nb as Microalloying. Metals. 2020; 10(2):206. https://doi.org/10.3390/met10020206
Chicago/Turabian StyleCerda Vázquez, Perla Julieta, José Sergio Pacheco-Cedeño, Mitsuo Osvaldo Ramos-Azpeitia, Pedro Garnica-González, Vicente Garibay-Febles, Joel Moreno-Palmerin, José de Jesús Cruz-Rivera, and José Luis Hernández-Rivera. 2020. "Casting and Constitutive Hot Flow Behavior of Medium-Mn Automotive Steel with Nb as Microalloying" Metals 10, no. 2: 206. https://doi.org/10.3390/met10020206
APA StyleCerda Vázquez, P. J., Pacheco-Cedeño, J. S., Ramos-Azpeitia, M. O., Garnica-González, P., Garibay-Febles, V., Moreno-Palmerin, J., Cruz-Rivera, J. d. J., & Hernández-Rivera, J. L. (2020). Casting and Constitutive Hot Flow Behavior of Medium-Mn Automotive Steel with Nb as Microalloying. Metals, 10(2), 206. https://doi.org/10.3390/met10020206