Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, G.B. An easy method to design gas/vapor relief system with rupture disk. J. Loss Prev. Process Ind. 2015, 35, 321–328. [Google Scholar] [CrossRef]
- Mutegi, M.K.; Schmidt, J.; Denecke, J. Sizing rupture disk vent line systems for high-velocity gas flows. J. Loss Prev. Process Ind. 2019, 62, 103950. [Google Scholar] [CrossRef]
- Shannak, B. Experimental and theoretical investigation of gas-liquid flow pressure drop across rupture discs. Nucl. Eng. Des. 2010, 240, 1458–1467. [Google Scholar] [CrossRef]
- Schmidt, J.; Claramunt, S. Sizing of rupture disks for two-phase gas/liquid flow according to HNE-CSE-model. J. Loss Prev. Process Ind. 2016, 41, 419–432. [Google Scholar] [CrossRef]
- More, T.; Johnson, K. A simple, low-cost burst disc for use at cryogenic temperatures. Cryogenics 1998, 38, 947–948. [Google Scholar] [CrossRef]
- Xiao, H.H.; Duan, Q.L.; Sun, J.H. Premixed flame propagation in hydrogen explosions. Renew. Sustain. Energy Rev. 2018, 81, 1988–2011. [Google Scholar] [CrossRef]
- Lee, B.J.; Jeung, I.S. Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube. Int. J. Hydrogen Energy 2009, 34, 8763–8769. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.R.; Kim, S.H.; Jeung, I.S. Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes. Proc. Combus. Inst. 2011, 33, 2351–2358. [Google Scholar] [CrossRef]
- Duan, Q.L.; Xiao, H.H.; Gao, W.; Gong, L.; Wang, Q.S.; Sun, J.H. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air. Fuel 2016, 181, 811–819. [Google Scholar] [CrossRef]
- GB567.1-567.4-2012. Bursting Disc Safety Devices; Standards Press of China: Beijing, China, 2013.
- Gong, L.; Duan, Q.L.; Liu, J.L.; Li, M.; Jin, K.Q.; Sun, J.H. Effect of burst disk parameters on the release of high-pressure hydrogen. Fuel 2019, 235, 485–494. [Google Scholar] [CrossRef]
- Schrank, M. Investigation on the degradation and opening behavior of knife blade burst disks. J. Loss Prev. Process Ind. 2014, 32, 161–164. [Google Scholar] [CrossRef]
- Lake, G.F.; Inglis, N.P. The design and manufacture of bursting disks. Proc. Inst. Mech. Eng. 1932, 142, 365–378. [Google Scholar] [CrossRef]
- Kanazawa, T.; Machida, S.; Miyata, T.; Niimura, Y.; Tanaka, O. Plastic deformation and rupture of thin circular plate under lateral pressure. In Proceedings of the 11th Japan Congress on Materials Research Testing Methods and Apparatus; The Society of Material Research: Kyoto, Japan, 1968; Volume 11, pp. 180–183. [Google Scholar]
- Weil, N.A. Rupture characteristics of safety diaphragms. J. Appl. Mech. Trans. ASME 1959, 26, 621–624. [Google Scholar]
- Ahmed, M.; Hashmi, M.S.J. Comparison of free and restrained bulge forming by finite element method simulation. J. Mater. Process. Technol. 1997, 63, 651–654. [Google Scholar] [CrossRef]
- Kong, X.W.; Zhang, J.C.; Li, X.Q.; Jin, Z.B.; Zhong, H.; Zhan, Y.; Han, F.J. Experimental and finite element optimization analysis on hydroforming process of rupture disc. Procedia Manuf. 2018, 15, 892–898. [Google Scholar] [CrossRef]
- Xue, L.; Widera, G.E.O.; Sang, Z. Parametric FEA study of burst pressure of cylindrical shell intersections. J. Press. Vessel Technol. ASME 2010, 132, 031203. [Google Scholar] [CrossRef]
- Cherouat, A.; Ayadi, M.; Mezghani, N.; Slimani, F. Experimental and finite element modelling of thin sheet hydroforming processes. Int. J. Mater. Form. 2008, 1, 313–316. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Jo, W.; Kim, H.; Baek, S.H.; Lee, S.B. Structural analysis on the superficial grooving stainless-steel thin-plate rupture discs. Int. J. Precis. Eng. Manuf. 2014, 15, 1035–1040. [Google Scholar] [CrossRef]
- Matsuo, T.; Yamabe, J.; Matsuoka, S. Effects of hydrogen on tensile properties and fracture surface morphologies of type 316L stainless steel. Int. J. Hydrogen Energy 2014, 39, 3542–3551. [Google Scholar] [CrossRef]
- Qin, W.B.; Li, J.S.; Liu, Y.Y.; Kang, J.J.; Zhu, L.N.; Shu, D.F.; Peng, P.; She, D.S.; Meng, D.Z.; Li, Y.S. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater. Lett. 2019, 254, 116–119. [Google Scholar] [CrossRef]
- Peng, J.; Li, K.S.; Dai, Q.; Gao, G.F.; Zhang, Y.; Gao, W.W. Estimation of mechanical strength for pre-strained 316L austenitic stainless steel by small punch test. Vacuum 2019, 160, 37–53. [Google Scholar] [CrossRef]
- Li, K.S.; Peng, J.; Zhou, C.Y. Construction of whole stress-strain curve by small punch test and inverse finite element. Results Phys. 2018, 11, 440–448. [Google Scholar] [CrossRef]
- Shen, W.Z.; Li, C.F.; Wang, P.F.; Chen, G.J. Tensile behavior and flow stress calculation of 316L stainless steel at 25–350 °C. Trans. Mater. Heat Treat. 2012, 33, 49–54. [Google Scholar]
- GB150.1-GB150.4-2011. GB: Pressure Vessels; Standards Press of China: Beijing, China, 2012.
- Luo, G.M.; Hsu, Y.C. Nonlinear buckling strength of out-of-roundness pressure hull. Thin Walled Struct. 2018, 130, 424–434. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Zhai, X.M.; Wang, J.H. Buckling behaviors and ultimate strengths of 6082-T6 aluminum alloy columns under eccentric compression—Part I: Experiments and finite element modeling. Thin Walled Struct. 2019, 143, 106207. [Google Scholar] [CrossRef]
- Verwimp, E.; Tysmans, T.; Mollaert, M.; Berg, S. Experimental and numerical buckling analysis of a thin TRC dome. Thin Walled Struct. 2015, 94, 89–97. [Google Scholar] [CrossRef]
- Pauloa, R.M.F.; Carlone, P.; Valentec, R.A.F.; Teixeira-Dias, F.; Rubino, F. Numerical simulation of the buckling behaviour of stiffened panels: Benchmarks for assessment of distinct modelling strategies. Int. J. Mech. Sci. 2019, 157–158, 439–445. [Google Scholar] [CrossRef]
- Crisfield, M.A. Non-linear Finite Element Analysis of Solids and Structures; John Wiley & Sons: Chichester, UK, 1991. [Google Scholar]
- Žarkovic, D.; Jovanović, D.; Vukobratović, V.; Brujić, Z. Convergence improvement in computation of strain-softening solids by the arc-length method. Finite Elem. Anal. Des. 2019, 164, 55–68. [Google Scholar] [CrossRef]
- Hill, R. A theory of the plastic bulging of a metal diaphragm by lateral pressure. Philos. Mag. 1950, 41, 1133–1142. [Google Scholar] [CrossRef]
- Byun, T.S.; Hashimoto, N.; Farrell, K. Deformation mode map of irradiated 316 stainless steel in true stress-dose space. J. Nucl. Mater. 2006, 351, 303–315. [Google Scholar] [CrossRef]
- Wu, X.L.; Pan, X.; Mabon, J.C.; Li, M.M.; Stubbins, J.F. The role of deformation mechanisms in flow localization of 316L stainless steel. J. Nucl. Mater. 2006, 356, 70–77. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, T.S. Analysis of tensile deformation and failure in austenitic stainless steels: Part I—Temperature dependence. J. Nucl. Mater. 2010, 396, 1–9. [Google Scholar] [CrossRef]
- Mishra, S.; Yadava, M.; Kulkarni, K.N.; Gurao, N.P. A new phenomenological approach for modeling strain hardening behavior of face centered cubic materials. Acta Mater. 2019, 178, 99–113. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Ni | Mo | Cr | Fe |
---|---|---|---|---|---|---|---|---|
≤0.03 | ≤1.00 | ≤2.00 | ≤0.035 | ≤0.03 | 10.00–14.00 | 2.00–3.00 | 16.00–18.00 | bal. |
Temperature | 300 K | 373 K | 473 K | 573 K |
---|---|---|---|---|
Ultimate tensile strength (MPa) | 632 | 590 | 492 | 485 |
Break elongation (%) | 47 | 36 | 27 | 26 |
Young’s modulus (MPa) | 195,000 | 189,000 | 183,000 | 176,000 |
Poisson ratio | 0.3 | 0.3 | 0.3 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xu, W.; Luo, Z.; Zheng, H. Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc. Metals 2020, 10, 232. https://doi.org/10.3390/met10020232
Zhu H, Xu W, Luo Z, Zheng H. Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc. Metals. 2020; 10(2):232. https://doi.org/10.3390/met10020232
Chicago/Turabian StyleZhu, Hongbo, Weipu Xu, Zhiping Luo, and Hongxing Zheng. 2020. "Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc" Metals 10, no. 2: 232. https://doi.org/10.3390/met10020232
APA StyleZhu, H., Xu, W., Luo, Z., & Zheng, H. (2020). Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc. Metals, 10(2), 232. https://doi.org/10.3390/met10020232