Complements to Mügge and Friedel’s Theory of Twinning
Abstract
:1. Introduction
2. The Type I Twins and the Twinning Transformation Matrices
2.1. Crystallographic Notations
2.2. Schematic Representation of Twinning
2.3. The Distortion Matrix F
2.4. The Orientation Matrix T
2.5. The Correspondence Matrix C
2.6. The Conjugate Type II Twins Deduced from the Type I Twins
2.7. The Transformation Matrices Expressed in the Reciprocal Space
3. Direct Determination of the Transformation Matrices with the Help of Supercell Matrices
4. The Tilted Mode
4.1. Specificity of the Normal Mode
4.2. The Tilted Mode Explained in 2D
5. The Type II Twins Built as Real Reciprocal Twins
5.1. The q* Layers of d-Plane in the Reciprocal Space
5.2. The Reciprocal Transformation Matrices Determined from the Reciprocal Supercell
6. Discussion
6.1. Synthesis
6.2. Are the “Transformation Twins” Really Twins?
6.3. Can 3, 4 and 6-Fold Operations be Twin Operations?
6.4. Beyond Dogmas
6.4.1. Epitaxial Twinning
6.4.2. Iso-orientation Twinning
7. Conclusions
- (1)
- The usual theory only considers the cases in which F and T play a similar role (on the reticular direction w). This assumption is justified for twinning with low obliquity/shear values, but is not relevant for larger values. We showed in Section 4 that in such cases F and T should be uncorrelated, with T playing on w, and F acting on another reticular direction t pointing to a node of the same layer as that of w. The usual twinning mode was called “normal” and the other modes were called “tilted”. The normal and tilted modes constitute “complementary” twins. The tilted modes explain with an index q = 1 some twins without lattice shuffling previously reported with q = 2 in literature.
- (2)
- Type II twins have always been introduced as the conjugates of type I twins, which does not permit to capture their true nature. We showed in Section 5 that type II twinning is a simple shear on a reticular plane of the reciprocal lattice, exactly as type I twining is a simple shear on a reticular plane of the direct lattice. Type II twins can be determined independently of the type I twins, with the same mathematics.
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boulliard, J.-C. Le Cristal et ses Doubles; CNRS Editions: Paris, France, 2010. [Google Scholar]
- Haüy, R.J. Traité de Minéralogie 1801. Five Volumes. Available online: http://catalogue.bnf.fr/ark:/12148/cb373669857.public (accessed on 6 February 2020).
- Thomson, W.; Tait, P.G. Treatise on Natural Philosophy; Cambridge University Press: Cambridge, UK, 1867; Volume I (1) 170–171, pp. 105–106, (pp. 123–124 in the second edition 1879, §§149–150 in the Elements of Natural Philosophy, a simplified version of the Treatise). [Google Scholar]
- Mügge, O. Ueber homogene Deformationen (einfache Schiebungen) an den triklinen Doppelsalzen BaCdCl4.4aq. Neues Jahrb. Für Mineral. Geol. Und Palaeontol. Beil. 1889, 6, 274–304. [Google Scholar]
- Mügge, O. Über durch Druck entstandenes Zwillinge von Titanit nach den Kanten [100] uund [10]. Jahrb. Für Mineral. Geol. Und Palaeontol. Beil. 1889, 2, 98–115, (+Taff.II). [Google Scholar]
- Hardouin Duparc, O.B.M. A review of some elements for the history of mechanical twinning centred on its German origins until Otto Mügge’s K1 and K2 invariant plane notation. J. Mater. Sci. 2017, 52, 4182–4196. [Google Scholar] [CrossRef]
- Cahn, R.W. Twinned Crystals. Adv. Phys. 1954, 3, 363–445. [Google Scholar] [CrossRef]
- Reed-Hill, R.E.; Hirth, J.P.; Rogers, H.C. (Eds.) Deformation Twinning; Gordon & Breach: New York, NY, USA, 1964. [Google Scholar]
- Hall, E.O. Twinning and Diffusionless Transformations in Metals; Butterworths Scientific Publications: London, UK, 1954. [Google Scholar]
- Christian, J.W.; Mahajan, S. Deformation Twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Kihô, H. The Crystallographic Aspect of the Mechanical Twinning in Metals. J. Phys. Soc. Jpn. 1954, 9, 739–747. [Google Scholar] [CrossRef]
- Jaswon, M.A.; Dove, D.B. The Crystallography of Deformation Twinning. Acta Cryst. 1960, 13, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Bilby, B.A.; Crocker, A.G. The Theory of the Crystallography of Deformation Twinning. Proc. R. Soc. Lond. A 1965, 288, 240–255. [Google Scholar]
- Bevis, M.; Crocker, A.G. Twinning Shears in Lattices. Proc. R. Soc. Lond. A 1968, 304, 123–134. [Google Scholar]
- Crocker, A.G.; Bevis, M. The crystallography of deformation twinning in titanium. In The Science Technology and Application of Titanium; Jaffee, R., Promisel, N., Eds.; Pergamon Press: Oxford, UK, 1970; pp. 453–458. [Google Scholar]
- Mallard, E. Cours de minéralogie. Recueil de Données Cristallographiques et Physiques Concernant les Principales Espèces Minérales; Ecole des Mines de Paris: Paris, France, 1893. [Google Scholar]
- Hahn, T.; Janovec, V.; Klapper, H. Bicrystals, twins and domain structures-A comparison. Ferroelectrics 1999, 222, 11–21. [Google Scholar] [CrossRef]
- Nespolo, M.; Ferraris, G. Overlooked problems in manifold twins: Twin misfit in zero-obliquity TLQS twinning and twin index calculation. Acta Cryst. 2007, A63, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedel, G. Etudes sur les Groupements Cristallins; Société de l’Imprimerie Théolier: Fourneaux, France, 1904. [Google Scholar]
- Friedel, G. Leçons de Cristallographie; Berger-Levrault: Paris, France, 1926. [Google Scholar]
- Bollmann, W. Crystal Defects and Crystalline Interfaces; Springer: New York, NY, USA, 1970. [Google Scholar]
- Hardouin Duparc, O.B.M. A review of some elements in the history of grain boundaries centered on Georges Friedel, the coincident ‘site’ lattice and the twin index. J. Mater. Sci. 2011, 46, 4116–4134. [Google Scholar] [CrossRef]
- Cayron, C. The transformation matrices (distortion, orientation, correspondence), their continuous forms and their variants. Acta Cryst. 2019, A75, 411–437. [Google Scholar]
- Bhadeshia, H.K.D.H. Worked Examples in the Geometry of Crystals, 2nd ed.; Brookfield: London, UK, 1987. [Google Scholar]
- Cayron, C. Screening the simple shear twins. J. Appl. Cryst. in preparation.
- Pabst, A. Transformation of indices in twin gliding. Bull. Geol. Soc. Am. 1955, 66, 897–912. [Google Scholar] [CrossRef]
- Andrews, K.W.; Johnson, W. Formulae for the transformation of indices in twinned crystals. Br. J. Appl. Phys. 1955, 6, 92–96. [Google Scholar] [CrossRef]
- Feng, C.R.; Michel, D.J.; Crowe, C.R. Transformation of Miller indices in twinned structures. Philos. Mag. Let. 1989, 60, 137–140. [Google Scholar] [CrossRef]
- Klassen-Neklyudova. Mechanical Twinning of Crystals; Consultant Bureau: New York, NY, USA, 1964. [Google Scholar]
- Cayron, C. Hard-sphere displacive model of extension twinning in magnesium. Mater. Des. 2017, 119, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.; Zuo, J.M. Electron Microdiffraction; Plenum: New York, NY, USA, 1992. [Google Scholar]
- Wechsler, M.S.; Liebermann, D.S.; Read, T.A. On the theory of the formation of martensite. Trans. Aime 1953, 197, 1503–1515. [Google Scholar]
- Ball, J.M.; James, R.D. Fine phase mixtures as minimisers of energy. Arch. Nat. Mech. Anal. 1987, 100, 13–52. [Google Scholar] [CrossRef]
- Bhattacharya, K. Microstructure of Martensite, Why it Forms and how It Gives Rise to the Shape Memory Effect; Oxford Series on Materials Modelling; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Pitteri, M.; Zanzotto, G. Continuum Models for Phase Transitions and Twinning in Crystals; Chapman & Hall/CRC: London, UK, 2003. [Google Scholar]
- Cayron, C. Shifting the shear paradigm in the crystallographic models of displacive transformations in metals and alloys. Crystals 2018, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Cayron, C. Groupoid of orientational variants. Acta Cryst. 2006, A62, 21–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janovec, V. Group analysis of domains and domain pairs. Czech. J. Phys. B 1972, 22, 975–994. [Google Scholar] [CrossRef]
- Janovec, V.; Dvorakova, E. The coset and double coset decomposition of the 32 crystallographic point groups. Acta Cryst. A 1989, 45, 801–802. [Google Scholar] [CrossRef]
- Cayron, C.; Barcelo, F.; de Carlan, Y. The mechanism of the fcc-bcc martensitic transformation revealed by pole figures. Acta Mater. 2010, 58, 1395–1402. [Google Scholar] [CrossRef]
- Cayron, C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation. Acta Cryst. 2013, 69, 498–509. [Google Scholar] [CrossRef]
- Cayron, C. EBSD imaging of orientation relationships and variants groupings in different martensitic alloys and Widmanstätten iron meteorites. Mater. Charac. 2014, 94, 93–110. [Google Scholar] [CrossRef]
- Cayron, C. Continuous atomic displacements and lattice distortion during fcc–bcc martensitic transformation. Acta Mater. 2015, 96, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Cayron, C. Angular distortive matrices of phase transitions in the fcc-bcc-hcp system. Acta Mater. 2016, 111, 417–441. [Google Scholar] [CrossRef] [Green Version]
- Baur, A.P.; Cayron, C.; Logé, R.E. {225}γ habit planes in martensitic steels: From the PTMC to a continuous model. Sci. Rep. 2017, 7, 40938. [Google Scholar] [CrossRef]
- Nishiyama, Z. X-Ray Investigation of the Mechanism of the Transformation from Face-Centred Cubic Lattice to Body-Centred Cubic. Sci. Rep. Tohoku Univ. 1934, 23, 637–668. [Google Scholar]
- Nishiyama, Z.; Shimizu, K. On the sub-bands in a martensite plate. J. Electron. Microsc. 1956, 4, 51. [Google Scholar]
- Nishiyama, Z. Martensite Transformation; Fine, M.E., Meshii, M., Waymann, C.M., Eds.; Materials Science Series; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Nishiyama, Z. A comment on the phenomenological theory of the crystal habit of martensite. J. Less Com. Met. 1972, 28, 95. [Google Scholar] [CrossRef]
- Friedel, G. Sur un nouveau type de macles. Bull. De La Société Française De Minéralogie 1933, 56, 262–274. [Google Scholar]
- Cayron, C. A one-step mechanism for new twinning modes in magnesium and titanium alloys modelled by the obliquity correction of a (58°, a + 2b) prototype stretch twin. Acta Cryst. A 2018, 74, 44–53. [Google Scholar] [CrossRef]
- Cayron, C.; Logé, R. Evidence of new twinning modes in magnesium questioning the shear paradigm. J. Appl. Cryst. 2018, 51, 809–817. [Google Scholar]
Type | K1 | K2 | η1 | η2 | |
---|---|---|---|---|---|
Twin | I | p = | rotated | d // | w = |
Conjugate | II | rotated | p = | w = | d // |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cayron, C. Complements to Mügge and Friedel’s Theory of Twinning. Metals 2020, 10, 231. https://doi.org/10.3390/met10020231
Cayron C. Complements to Mügge and Friedel’s Theory of Twinning. Metals. 2020; 10(2):231. https://doi.org/10.3390/met10020231
Chicago/Turabian StyleCayron, Cyril. 2020. "Complements to Mügge and Friedel’s Theory of Twinning" Metals 10, no. 2: 231. https://doi.org/10.3390/met10020231
APA StyleCayron, C. (2020). Complements to Mügge and Friedel’s Theory of Twinning. Metals, 10(2), 231. https://doi.org/10.3390/met10020231