Solderability, Microstructure, and Thermal Characteristics of Sn-0.7Cu Alloy Processed by High-Energy Ball Milling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions and Future Research Directions
- Eutectic Sn-0.7Cu alloy was successfully produced by HEBM for 45 h. The XRD results showed that the crystallite size of the Sn-0.7Cu alloy was decreased down to 76 nm after 45 h of HEBM.
- Microhardness of the HEBM-ed Sn-0.7Cu alloy increased continuously with milling time. The maximum hardness (≈63 HV) was obtained for 45 milled powder.
- It was shown that HEBM up to 45 h decreased the solidus and liquidus melting temperatures down to 196.4 °C and 220.5 °C, respectively.
- There was a considerable depression of ~7 °C in the melting point of 45 h ball milled Sn-0.7Cu alloy. The spreadability of HEBM-ed Sn-0.7Cu powder improved significantly, to 84%, after 45 h of HEBM.
- Although interesting observations have been made in this work, much work remains to study the application of the Sn-0.7Cu alloy in electronic packaging. The future work directions include the application of the Sn-0.7Cu nanopowder for the reflow soldering on Cu and electroless nickel immersion gold (ENIG) substrates in chip-scale devices.
- The results can also be applied to study the thermomechanical fatigue and fretting-wear properties of the reflowed solders. The study of thermal stability of the developed solders at higher reflow temperatures also requires further attention.
- Various solder alloys have already been tested for high-temperature thermal shock reliability; nevertheless, most of the Sn-Cu alloys need further research to obtain a better understanding of their performance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abtew, M.; Selvaduray, G. Lead-free solders in microelectronics. Mater. Sci. Eng. R 2000, 27, 95–141. [Google Scholar] [CrossRef]
- Zeng, K.; Tu, K.N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R 2002, 38, 55–105. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, C.M.; Pecht, M. A review of lead-free solders for electronics application. Microelectron. Reliab. 2017, 75, 77–95. [Google Scholar] [CrossRef]
- Ma, H.; Suhling, J.C. A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 2009, 44, 1141–1158. [Google Scholar] [CrossRef]
- Suganuma, K. Advances in lead-free electronics soldering. Curr. Opin. Solid State. Mater. 2001, 5, 55–64. [Google Scholar] [CrossRef]
- Guo, F.J. Composite lead-free electronic solders. Mater. Sci. Mater. Electron. 2007, 18, 129–145. [Google Scholar] [CrossRef]
- Puttlitz, K.J.; Stalter, K.A. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Kim, K.S.; Huh, H.S.; Suganuma, K. Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloy. Compd. 2003, 352, 226–236. [Google Scholar] [CrossRef]
- Wu, C.M.L.; Yu, D.Q.; Law, C.M.T.; Wang, L. Properties of Pb-free solder alloys with rare earth element additions. Mater. Sci. Eng. R 2004, 44, 1–44. [Google Scholar] [CrossRef]
- Lee, T.Y.; Choi, W.J.; Tu, K.N.; Jang, J.W.; Kuo, S.M.; Lin, J.K.; Frear, D.R.; Zeng, K.; Kivilahti, J.K. Morphology, kinetics, and thermodynamics of solid state aging of eutectic SnPb and Pb-free solders (SnAg, SnAgCu, and SnCu) on Cu. J. Mater. Res. 2002, 17, 291–301. [Google Scholar] [CrossRef]
- Ki, Y.S.; Kim, H.I.; Kim, J.M.; Shin, Y.E. Prediction of thermal fatigue life on mBGA solder joint using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi solder alloys. JWJ 2003, 21, 92–98. [Google Scholar]
- Park, J.H.; Lee, H.Y.; Jhun, J.H.; Cheon, C.S.; Jung, J.P. Characteristics of Sn–1.7Bi–0.7Cu–0.6In lead-free solder. JWJ 2008, 26, 43–48. [Google Scholar]
- Moon, J.W.; Kim, M.I.I.; Jung, J.P. A study on the soldering characteristics of Sn–Ag–Bi–In ball in BGA. JWJ 2002, 20, 99–103. [Google Scholar]
- Kotadia, H.R.; Mokhtari, O.; Clode, M.P.; Green, M.A.; Mannan, S.H. Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates. J. Alloys Compd. 2012, 511, 176–188. [Google Scholar] [CrossRef]
- Myung, W.R.; Ko, M.K.; Kim, Y.J. Effects of Ag content on the reliability of LED package component with Sn-Bi-Ag solder. J. Mater. Sci. Mater. Electron. 2015, 26, 8707–8713. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, L.; Guo, Y.H. Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints. J. Mater. Sci. Mater. Electron. 2015, 26, 7629–7634. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, L.; Liu, Z.Q.; Xiong, M.-Y.; Sun, L. Structure and properties of Sn-Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 2019, 20, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Piao, J.Y.; Takemoto, T. Interfacial reaction between Sn-0.7Cu(-Ni) solder and Cu substrate. J. Electron. Mater. 2006, 35, 1127–1132. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Howes, P.D.; Mannan, S.H. A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 2014, 54, 1253–1273. [Google Scholar] [CrossRef]
- Buffat, P.; Borel, J.P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298. [Google Scholar] [CrossRef] [Green Version]
- Nanda, K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana 2009, 72, 617–628. [Google Scholar] [CrossRef]
- Letellier, P.; Mayaffre, A.; Turmine, M. Melting point depression of nanosolids: Nonextensive thermodynamics approach. Phys. Rev. B 2007, 76, 045428. [Google Scholar] [CrossRef]
- Lee, H.Y.; Sharma, A.; Kee, S.H.; Lee, Y.W.; Moon, J.T.; Jung, J.P. Effect of aluminium additions on wettability and intermetallic compound (IMC) growth of lead free Sn (2 wt. % Ag, 5 wt. % Bi) soldered joints. Electron. Mater. Lett. 2014, 10, 997–1004. [Google Scholar] [CrossRef]
- Shen, J.; Chan, Y.C. Research advances in nano-composite solders. Microelectron. Reliab. 2009, 49, 223–234. [Google Scholar] [CrossRef]
- Sharma, A.; Das, S.; Das, K. Pulse Electrodeposition of Lead-Free Tin-Based Composites for Microelectronic Packaging. In Electrodeposition of Composite Materials; Mohamed, A.M.A., Golden, T.D., Eds.; InTech: Rijeka, Croatia, 2016; pp. 253–274. [Google Scholar]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Koch, C.C. Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater. 1997, 9, 13–22. [Google Scholar] [CrossRef]
- Koch, C.C.; Scattergood, R.O.; Youssef, K.M.; Chan, E.; Zhu, Y.T. Nanostructured materials by mechanical alloying: New results on property enhancement. J. Mater. Sci. 2010, 45, 4725–4732. [Google Scholar] [CrossRef]
- Huang, M.L.; Wu, C.M.L.; Lai, J.K.L.; Wang, L.; Wang, F.G. Lead free solder alloys Sn-Zn and Sn-Sb prepared by mechanical alloying. J. Mater. Sci. Mater. Electron. 2000, 11, 57–65. [Google Scholar]
- Lai, L.H.; Duh, J.G. Lead-free Sn–Ag and Sn–Ag–Bi solder powders prepared by mechanical alloying. J. Electron. Mater. 2003, 32, 215–220. [Google Scholar] [CrossRef]
- Nai, S.M.L.; Wei, J.; Gupta, M. Lead free solder reinforced with multiwalled carbon nanotubes. J. Electron. Mater. 2006, 35, 1518–1522. [Google Scholar] [CrossRef]
- Sharma, A.; Sohn, H.R.; Jung, J.P. Effect of graphene nanoplatelets on wetting, microstructure, and tensile characteristics of Sn-3.0 Ag-0.5 Cu (SAC) alloy. Metall. Mater. Trans A 2016, 47, 494–503. [Google Scholar] [CrossRef]
- Babaghorbani, P.; Nai, S.M.L.; Gupta, M. Development of lead-free Sn–3.5Ag/SnO2 nanocomposite solders. J. Mater. Sci. Mater. Electron. 2009, 20, 571–576. [Google Scholar] [CrossRef]
- Gain, A.K.; Chan, Y.C.; Yung, W.K.C. Microstructure, thermal analysis and hardness of a Sn-Ag-Cu-1 wt. % nano-TiO2 composite solder on flexible ball grid array substrates. Microelectron. Reliab. 2011, 51, 975–984. [Google Scholar] [CrossRef]
- Liu, P.; Yao, P.; Liu, J. Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy. J. Electron. Mater. 2008, 37, 874–879. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushuttom, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alijani, F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, A.K. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying. Mater. Des. 2014, 55, 373–380. [Google Scholar] [CrossRef]
- Reddy, B.; Bhattacharya, P.; Singh, B.; Chattopadhyay, K. The effect of ball milling on the melting behavior of Sn–Cu–Ag eutectic alloy. J. Mater. Sci. 2009, 44, 2257–2263. [Google Scholar] [CrossRef]
- Benjamin, J.S.; Volin, T.E. The mechanism of mechanical alloying. Metall. Trans. A 1974, 5, 1929–1934. [Google Scholar] [CrossRef]
- Abdoli, H.; Ghanbarib, M.; Baghshahi, S. Thermal stability of nanostructured aluminum powder synthesized by high-energy milling. Mater. Sci. Eng. A 2011, 528, 6702–6707. [Google Scholar] [CrossRef]
- Olson, E.A.; Efremov, M.Y.; Zhang, M.; Allen, L.H. Size-dependent melting of Bi nanoparticles. J. Appl. Phys. 2005, 97, 034304. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Roh, M.H.; Jung, D.H.; Jung, J.P. Effect of ZrO2 nanoparticles on the microstructure of Al-Si-Cu filler for low-temperature Al brazing applications. Metall. Mater. Trans. A 2016, 47, 510–521. [Google Scholar] [CrossRef]
- Jung, D.H.; Sharma, A.; Jung, J.P. Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor. J. Alloy Compd. 2018, 743, 300–313. [Google Scholar] [CrossRef]
- Ismail, N.; Ismail, R.; Ubaidillah, N.K.A.N.; Jalar, A.; Zain, N.M. Surface roughness and wettability of SAC/CNT lead free solder. Mater. Sci. Forum 2016, 857, 73–75. [Google Scholar] [CrossRef]
Element | Composition (wt. %) | |
---|---|---|
Cu | Sn | |
Values | 0.7 | 99.3 |
Milling Time (h) | Crystallite Size (D, nm) | Lattice Strain (%) |
---|---|---|
5 | 185 ± 14 | 0.23 ± 0.07 |
15 | 173 ± 12 | 0.39 ± 0.08 |
25 | 159 ± 11 | 0.42 ± 0.09 |
35 | 139 ± 09 | 0.51 ± 0.11 |
45 | 76 ± 05 | 1.87 ± 0.24 |
Phase | Composition (at.%) | |
---|---|---|
Cu | Sn | |
Bright (1) | 1.94 | 98.06 |
Dark (2) | 64.7 | 35.3 |
Grey (3) | 0 | 100 |
Milling Time (h) | Solidus (TS) (°C) | Liquidus (TL) (°C) | Pasty Range (TL–TS) (°C) | Enthalpy (J/g) |
---|---|---|---|---|
5 | 205.5 | 226.2 | 20.7 | 57.8 |
15 | 202.1 | 225.5 | 23.4 | 57.3 |
25 | 199.7 | 223.4 | 23.7 | 55.4 |
35 | 197.3 | 221.6 | 24.3 | 53.2 |
45 | 196.4 | 220.5 | 24.1 | 52.1 |
Milling Time (h) | Spread Ratio (%) | Error (%) |
---|---|---|
5 | 63 | ±2 |
15 | 72 | ±4 |
25 | 75 | ±5 |
35 | 80 | ±6 |
45 | 84 | ±7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Oh, M.C.; Chae, M.J.; Seo, H.; Ahn, B. Solderability, Microstructure, and Thermal Characteristics of Sn-0.7Cu Alloy Processed by High-Energy Ball Milling. Metals 2020, 10, 370. https://doi.org/10.3390/met10030370
Sharma A, Oh MC, Chae MJ, Seo H, Ahn B. Solderability, Microstructure, and Thermal Characteristics of Sn-0.7Cu Alloy Processed by High-Energy Ball Milling. Metals. 2020; 10(3):370. https://doi.org/10.3390/met10030370
Chicago/Turabian StyleSharma, Ashutosh, Min Chul Oh, Myoung Jin Chae, Hyungtak Seo, and Byungmin Ahn. 2020. "Solderability, Microstructure, and Thermal Characteristics of Sn-0.7Cu Alloy Processed by High-Energy Ball Milling" Metals 10, no. 3: 370. https://doi.org/10.3390/met10030370
APA StyleSharma, A., Oh, M. C., Chae, M. J., Seo, H., & Ahn, B. (2020). Solderability, Microstructure, and Thermal Characteristics of Sn-0.7Cu Alloy Processed by High-Energy Ball Milling. Metals, 10(3), 370. https://doi.org/10.3390/met10030370