Role of Ag+ in the Bioleaching of Arsenopyrite by Acidithiobacillus ferrooxidans
Abstract
:1. Introduction
2. Thermodynamic Calculations
3. Experimental
3.1. Minerals, Strain and Media
3.2. Bioleaching Experiment
3.3. Analytical Methods
4. Results and Discussion
4.1. Effect of Ag+ Addition on Arsenopyrite Bioleaching
4.2. Thermodynamics of Arsenopyrite Dissolution in the Presence of Ag+
4.3. Mineralogical Phase Transformation
4.4. Morphology and Surface Composition Changes
4.5. Possible Mechanisms for the Ag+ Catalysed Bioleaching of Arsenopyrite
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Species | ΔGf°298 | Species | ΔGf°298 | Species | ΔGf°298 | Species | ΔGf°298 |
/(kJ/mol) | /(kJ/mol) | /(kJ/mol) | /(kJ/mol) | ||||
FeAsS | −49.7616 | As2S2 | −68.5508 | S | 0 | AgO | 14.50 |
FeAsO4 | −772.727 | As2S3 | −91.4907 | S2− | 86.00982 | AgO2 | −10.996 |
Fe3(AsO4)2 | −1766.73 | As2O3 | −576.899 | S22− | 79.76167 | Ag2O | −11.180 |
Fe(OH)2 | −492.158 | As2O4 | −701.161 | SO32− | −486.755 | Ag2O2 | 27.429 |
Fe(OH)3 | −705.885 | As2O5 | −782.437 | S2O32− | −518.87 | Ag2O3 | 121.329 |
FeO·OH | −489.439 | As4O6 | −1152.42 | S2O42− | −600.825 | Ag2S | −40.401 |
Fe3+ | −17.1907 | AsO2– | −349.991 | S2O52− | −791.217 | Ag2SO3 | −411.615 |
Fe2+ | −91.5644 | AsO43– | −648.477 | S2O62− | −969.453 | Ag2+ | 268.686 |
FeOH2+ | −242.064 | As(OH)4– | −824.457 | S2O72− | −795.432 | Ag+ | 77.148 |
FeOH+ | −275.615 | HAsO3− | −606.638 | S2O82− | −1115.35 | Ag(HS)2− | 0.247 |
Fe(OH)2+ | −452.391 | HAsO42− | −714.732 | HS2− | 11.51053 | AgO− | −22.762 |
Fe2(OH)24+ | −467.733 | H2AsO3− | −587.149 | HSO3− | −527.84 | Ag(OH)2− | −260.214 |
H3OFe3(SO4)2(OH)6 b | −3230.36 | H2AsO4− | −753.399 | HS− | 12.44438 | AgS− | 59.968 |
H3AsO3 (a) | −638.142 | HS2O3− | −532.363 | Ag(SO3)− | −441.572 | ||
H2O | −237.177 | H3AsO4 (a) | −764.001 | H2S (a) | −27.656 | Ag(SO3)23− | −946.744 |
HAsO2 (a) | −402.951 | Ag(SO3)35− | −1434.875 | ||||
Ag(S2O3)− | −490.262 | ||||||
Ag(S2O3)23− | −1023.386 | ||||||
Ag(S2O3)35− | −2241.344 |
References
- Corkhill, C.L.; Vaughan, D.J. Arsenopyrite oxidation—A review. Appl. Geochem. 2009, 24, 2342–2361. [Google Scholar] [CrossRef]
- Márquez, M.A.; Ospina, J.D.; Morales, A.L. New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope. Miner. Eng. 2012, 39, 248–254. [Google Scholar] [CrossRef]
- Liu, X.; Xu, B.; Min, X.; Li, Q.; Yang, Y.; Jiang, T.; He, Y.; Zhang, X. Effect of pyrite on thiosulfate leaching of gold and the role of ammonium alcohol polyvinyl phosphate (AAPP). Metals 2017, 7, 278. [Google Scholar] [CrossRef]
- Mikhlin, Y.L.; Romanchenko, A.S.; Asanov, I.P. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study. Geochim. Cosmochim. Acta 2006, 70, 4874–4888. [Google Scholar] [CrossRef]
- Fomchenko, N.V.; Muravyov, M. Thermodynamic and XRD analysis of arsenopyrite biooxidation and enhancement of oxidation efficiency of gold-bearing concentrates. Int. J. Miner. Process. 2014, 133, 112–118. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Zhang, Y.; Jiang, T.; Yang, Y.; Xu, B.; He, Y. Improving gold recovery from a refractory ore via Na2SO4 assisted roasting and alkaline Na2S leaching. Hydrometallurgy 2019, 185, 133–141. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Zhang, Y.; Jiang, T.; Yang, Y.; Xu, B.; He, Y. Simultaneous removal of S and As from a refractory gold ore in a single stage O2-enriched roasting process. Metall. Mater. Trans. B 2019, 50, 1588–1596. [Google Scholar] [CrossRef]
- Miller, P.; Brown, A.R.G. Bacterial Oxidation of Refractory Gold Concentrates. In Gold Ore Processing: Project Development and Operations; Adams, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 359–372. [Google Scholar]
- Craw, D.; Falconer, D.; Youngson, J.H. Environmental arsenopyrite stability and dissolution: Theory, experiment, and field observations. Chem. Geol. 2003, 199, 71–82. [Google Scholar] [CrossRef]
- Fantauzzi, M.; Licheri, C.; Atzei, D.; Loi, G.; Elsener, B.; Rossi, G.; Rossi, A. Arsenopyrite and pyrite bioleaching: Evidence from XPS, XRD and ICP techniques. Anal. Bioanal. Chem. 2011, 401, 2237–2248. [Google Scholar] [CrossRef] [PubMed]
- Henao, D.M.O.; Godoy, M.A.M. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy 2010, 104, 162–168. [Google Scholar] [CrossRef]
- Pathak, A.; Morrison, L.; Healy, M.G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresour. Technol. 2017, 229, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Liu, X.; Yin, H.; Yang, Y.; Xu, B.; Jiang, T.; He, Y. The catalytic effect of copper ion in the bioleaching of arsenopyrite by Acidithiobacillus ferrooxidans in 9K culture medium. J. Clean. Prod. 2020, 256, 120391. [Google Scholar] [CrossRef]
- Abdollahi, H.; Shafaei, S.Z.; Noaparast, M.; Manafi, Z.; Niemelä, S.I.; Tuovinen, O.H. Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate. Int. J. Miner. Process. 2014, 128, 25–32. [Google Scholar] [CrossRef]
- Feng, S.; Yang, H.; Xin, Y.; Gao, K.; Yang, J.; Liu, T.; Zhang, L.; Wang, W. A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus. Bioresour. Technol. 2013, 129, 456–462. [Google Scholar] [CrossRef]
- Nazari, G.; Dixon, D.G.; Dreisinger, D.B. The mechanism of chalcopyrite leaching in the presence of silver-enhanced pyrite in the Galvanox™ process. Hydrometallurgy 2012, 113–114, 122–130. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Gan, X.; Hu, M.; Zhang, E.; Qin, W.; Qiu, G. Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis. Miner. Eng. 2015, 81, 29–39. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, G.; Cao, J.; Li, Y.; Fang, Z.; Yang, C. Catalytic effect of Ag+ and Cu2+ on leaching realgar (As2S2). Hydrometallurgy 2011, 106, 99–103. [Google Scholar] [CrossRef]
- Zhang, G.; Chao, X.; Guo, P.; Cao, J.; Yang, C. Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As2S3) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus. J. Hazard. Mater. 2015, 283, 117–122. [Google Scholar] [CrossRef]
- Fang, F.; Zhong, H.; Jiang, F.; Zhan, X. Catalytic effect of silver on bioleaching of arsenopyrite. Int. J. Chem. Eng. Appl. 2014, 5, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Q.; Zhang, Y.; Yang, Y.; Xu, B.; Jiang, T. Formation process of the passivating products from arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in 9K culture medium. Metals 2019, 9, 1320. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Q.; Zhang, Y.; Jiang, T.; Yang, Y.; Xu, B.; He, Y. Electrochemical behaviour of the dissolution and passivation of arsenopyrite in 9K culture medium. Appl. Surf. Sci. 2020, 508, 145269. [Google Scholar] [CrossRef]
- Roine, A. Outokumpu HSC Chemistry for Windows: Chemical reaction and equilibrium software with extensive thermochemical database. In User’s Guide, Version 6.0.; Outokumpu Research Oy: Pori, Finland, 2006. [Google Scholar]
- Lázaro, I.; Cruz, R.; González, I.; Monroy, M. Electrochemical oxidation of arsenopyrite in acidic media. Int. J. Miner. Process. 1997, 50, 63–75. [Google Scholar] [CrossRef]
- Cruz, R.; Lázaro, I.; Rodríguez, J.M.; Monroy, M.; González, I. Surface characterization of arsenopyrite in acidic medium by triangular scan voltammetry on carbon paste electrodes. Hydrometallurgy 1997, 46, 303–319. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tao, X.X.; Cai, P. Study of formation of jarosite mediated by thiobacillus ferrooxidans in 9K medium. Procedia Earth Planet. Sci. 2009, 1, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bigham, J.M.; Jones, F.S.; Tuovinen, O.H. Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22–65 °C. Geochim. Cosmochim. Acta 2007, 71, 155–164. [Google Scholar] [CrossRef]
- Qorbani, M.; Gholami, M.; Moradlou, O.; Naseri, N.; Moshfegh, A.Z. Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting. RSC Adv. 2014, 4, 7838–7844. [Google Scholar]
- Ristova, M.; Ristov, M. XPS profile analysis on CdS thin film modified with Ag by an ion exchange. Appl. Surf. Sci. 2001, 181, 68–77. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1995. [Google Scholar]
- Puigdomenech, I. Make equilibrium diagrams using sophistacated algorithms (MEDUSA). In Inorganic Chemistry; Royal Institute of Technology: Stockholm, Sweden, 2004. [Google Scholar]
Oxidative Dissolution of Arsenopyrite | ∆Gr0/(kJ/mol) a | No. |
---|---|---|
3FeAsS + 2H2O + 7Fe3+ = As2S2 + S2– + 10Fe2+ + AsO2– + 4H+ | −504.203 | 1 |
4FeAsS + 4H2O + 12Fe3+ = As2S3 + S2– + 16Fe2+ + 2AsO2– + 8H+ | −816.451 | 2 |
2FeAsS + 6H2O + 10Fe3+ = S0 + 2HAsO3– + S2– + 12Fe2+ + 10H+ | −531.546 | 3 |
3FeAsS + 2H2O + 2Ag+ + 7Fe3+ = Ag2S + As2S2 + 10Fe2+ + AsO2– + 4H+ | −784.910 | 4 |
4FeAsS + 4H2O + 2Ag+ + 12Fe3+ = Ag2S + As2S3 + 16Fe2+ + 2AsO2– + 8H+ | −1097.156 | 5 |
2FeAsS + 6H2O + 2Ag+ + 10Fe3+ = Ag2S + S0 + 2HAsO3– + 12Fe2+ + 10H+ | −812.255 | 6 |
Oxidation of Passivating Products from Arsenopyrite Leaching | ||
2As2S2 + 15H2O + 16Fe3+ = 4HAsO3– + 2S2– + HS2O3– + 16Fe2+ + 25H+ | −282.116 | 7 |
As2S3 + 9H2O + 10Fe3+ = 2HAsO3– + S2– + HS2O3– + 10Fe2+ + 15H+ | −177.281 | 8 |
2S0 + 3H2O + 2Fe3+ = HS2O3– + S2– + 2Fe2+ + 5H+ | −116.431 | 9 |
2As2S2 + 15H2O + 4Ag+ + 16Fe3+ = 2Ag2S + 4HAsO3– + HS2O3‒ + 16Fe2+ + 25H+ | −843.533 | 10 |
As2S3 + 9H2O + 2Ag+ + 10Fe3+ = Ag2S + 2HAsO3– + HS2O3‒ + 10Fe2+ + 15H+ | −457.990 | 11 |
3S0 + 3H2O + 2Ag+ + 2Fe3+ = Ag2S + HS2O3‒ + 2Fe2+ + 5H+ | −164.276 | 12 |
Oxidation of Ag2S | ||
8Fe3+ + 2Ag2S + 3H2O = 8Fe2+ + 4Ag+ + HS2O3– + 5H+ | −26.421 | 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Q.; Liu, X. Role of Ag+ in the Bioleaching of Arsenopyrite by Acidithiobacillus ferrooxidans. Metals 2020, 10, 403. https://doi.org/10.3390/met10030403
Zhang Y, Li Q, Liu X. Role of Ag+ in the Bioleaching of Arsenopyrite by Acidithiobacillus ferrooxidans. Metals. 2020; 10(3):403. https://doi.org/10.3390/met10030403
Chicago/Turabian StyleZhang, Yan, Qian Li, and Xiaoliang Liu. 2020. "Role of Ag+ in the Bioleaching of Arsenopyrite by Acidithiobacillus ferrooxidans" Metals 10, no. 3: 403. https://doi.org/10.3390/met10030403
APA StyleZhang, Y., Li, Q., & Liu, X. (2020). Role of Ag+ in the Bioleaching of Arsenopyrite by Acidithiobacillus ferrooxidans. Metals, 10(3), 403. https://doi.org/10.3390/met10030403