Effects of Thermomechanical Treatment on Phase Transformation of the Ti50Ni49W1 Shape Memory Alloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Phase Transformation of the Alloys
3.2. The Effects of Thermal Cycling on Phase Transformation
3.3. The Effects of Cold Rolling on Phase Transformation
3.4. The Effects of Strengthening on Martensitic Transformation Temperatures
4. Conclusions
- (1)
- The B19’ martensite lattice parameters in the Ti50Ni49W1 alloy are a = 0.301 nm, b = 0.423 nm, c = 0.472 nm, and β = 97.5°. The Ti50Ni49W1 alloy possesses slightly lower shape-recovery ability than the Ti50Ni50 alloy due to second-phase particles, Ti2(Ni,W), precipitating along the grain boundaries of the Ti(Ni,W) matrix.
- (2)
- Peak temperatures of the martensitic and austenite phase were found in lower temperatures and while the hardness values increased with an increasing number of thermal cycles. Furthermore, the decrease in A* of the Ti50Ni49W1 alloy was larger than that of Ti50Ni50 alloy, because the former had a harder matrix and second-phase particles.
- (3)
- Cold rolling causes martensite stabilization of the Ti50Ni49W1 alloy. The increase in the hardness of this alloy is more than that of the Ti50Ni50 alloy, which is cold-rolled to the same reduction in thickness. W atoms solid-solvated in TiNi and second-phase Ti2(Ni,W) are suggested to account for this characteristic behavior.
- (4)
- Both thermal cycling and cold rolling decrease the Ms (M*) temperatures of the Ti50Ni49W1 alloy, and the decrement follows Ms = To − KΔσy. The K value of the Ti50Ni49W1 alloy is greater than that of the Ti50Ni50 alloy that underwent the same strengthening process.
Author Contributions
Funding
Conflicts of Interest
References
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Lobo, P.S.; Almeida, J.; Guerreiro, L. Shape memory alloys behaviour: A review. Procedia Eng. 2015, 114, 776–783. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh, M.; Aboutalebi, M.R.; Salehi, M.T.; Abbasi, S.M.; Morakabati, M. Adjustment of aging temperature for reaching superelasticity in highly Ni-Rich Ti-51.5Ni NiTi shape memory alloy. Mater. Manuf. Processes 2016, 31, 1014–1021. [Google Scholar] [CrossRef]
- Aboutalebi, M.R.; Karimzadeh, M.; Salehi, M.T.; Abbasi, S.M.; Morakabati, M. Influences of aging and thermomechanical treatments on the martensitic transformation and superelasticity of highly Ni-rich Ti-51.5 at.% Ni shape memory alloy. Thermochim. Acta 2015, 616, 14–19. [Google Scholar] [CrossRef]
- Lin, H.C.; Wu, S.K.; Chou, T.S.; Kao, H.P. The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy. Acta Metall. 1991, 39, 2069–2080. [Google Scholar] [CrossRef]
- Hsieh, S.F.; Chen, S.L.; Lin, H.C.; Lin, M.H.; Huang, J.H.; Lin, M.C. A study of TiNiCr ternary shape memory alloys. J. Alloys Compd. 2010, 494, 155–160. [Google Scholar] [CrossRef]
- Li, Y.F.; Kang, X.Y.; Yin, X.Q.; Xie, H.F.; Mi, X.J. Microstructure and mechanical properties of cold-rolled Ti50Ni47Fe3 shape memory alloy. Trans. Nonferrous Metal Soc. China 2014, 24, 2890–2895. [Google Scholar] [CrossRef]
- Mohammad, S.E.; Kermanpur, A.; Karimzadeh, F. The effect of thermomechanical processing on the microstructure and mechanical properties of the nanocrystalline TiNiCo shape memory alloy. Mater. Sci. Eng. A 2014, 598, 183–189. [Google Scholar] [CrossRef]
- Kolomystev, V.I. The effect of alloying by 3d, 4d, 5d transition metal klements on martensite transformation temperatures in compound TiNi. Scr. Metall. 1994, 31, 1415–1420. [Google Scholar]
- Wu, S.K.; Wayman, C.M. Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys. Metallorgraphy 1987, 20, 359–376. [Google Scholar] [CrossRef]
- Lo, Y.C.; Wu, S.K.; Wayman, C.M. Transformation heat as a function of ternary Pd additions in Ti50Ni50−zPdz alloys with x:20∼50 at.%. Scr. Metall. 1990, 24, 1571–1576. [Google Scholar] [CrossRef]
- Lindqist, P.G.; Wayman, C.M.; Duering, T.W.; Melton, K.N.; Stockel, D.; Wayman, C.M. Engineering Aspects of Shape Memory Alloys; Butterworth-Heinemann: London, UK, 1990. [Google Scholar]
- Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K. Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability. Mater. Des. 2014, 56, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Tian, X.H.; Ji, G.J.; Gui, T.L.; Cai, W. Elastic property and electronic structure of TiNiPt high-temperature shape memory alloys. Solid State Commun. 2008, 147, 8–10. [Google Scholar] [CrossRef]
- Edmonds, H.R.; Wayman, C.M. Phase transformations in ternary TiNix alloys. Scr. Metall. 1986, 20, 773–779. [Google Scholar] [CrossRef]
- Hwang, C.M.; Wayman, C.M. Phase transformations in TiNiFe, TiNiAl and TiNi alloys. Scr. Metall. 1983, 17, 1345–1350. [Google Scholar] [CrossRef]
- Lo, Y.C.; Wu, S.K.; Horng, H.E. A study of B2 ↔ B19 ↔ B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall. Mater. 1993, 41, 747–759. [Google Scholar] [CrossRef]
- Ren, X.; Mirua, N.; Taniwaki, K.; Otsuka, K.; Suzuki, T.; Tanka, K.; Chumltyakov, Y.I.; Asai, M. Understanding the martensitic transformations in TiNi-based alloys by elastic constants measurement. Mater. Sci. Eng. A 1999, 273–275, 190–194. [Google Scholar] [CrossRef]
- Nishida, M.; Wayman, C.M.; Honma, T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A 1986, 17, 1505–1515. [Google Scholar] [CrossRef]
- Lin, H.C.; Wu, S.K.; Lin, J. The martensitic transformation in Ti-rich TiNi shape memory alloys. Mater. Chem. Phys. 1994, 37, 184–190. [Google Scholar] [CrossRef]
- Hsieh, S.F.; Ou, S.F.; Chou, C.K. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy. Appl. Surf. Sci. 2017, 392, 581–589. [Google Scholar] [CrossRef]
- Schaffer, J.P.; Saxena, A.; Antolovich, S.D.; Sanders, T.H., Jr.; Warner, S.B. The Science and Design of Engineering Materials, 2nd ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Lin, H.C.; Wu, S.K. Strengthening effect on shape recovery characteristic of the equiatomic TiNi alloy. Scr. Metall. 1992, 26, 59–62. [Google Scholar] [CrossRef]
- Villars, P.; Prince, A.; Okamoto, H. Handbook of Ternary Alloy Phase Diagram; ASM International: Pittsburgh, PA, USA, 1955; Volume 10. [Google Scholar]
- Honma, T.; Funakubo, H. Shape Memory Alloys; Gordon and Breach: Philadelphia, PA, USA, 1984. [Google Scholar]
- Nishida, M.; Wayman, C.M. Electron microscopy studies of precipitation processes in near-equiatomic TiNi shape memory alloys. Mater. Sci. Eng. 1987, 93, 191–203. [Google Scholar] [CrossRef]
- Cohen, M.; Machlin, E.S.; Paranjpe, V.G. Thermodynamics in Physical Metallurgy; ASM: Metals Park, OH, USA, 1950. [Google Scholar]
- Hornbogen, E. The effect of variables on martensitic transformation temperatures. Acta Metall. 1991, 33, 595–601. [Google Scholar] [CrossRef]
- Otsuka, K.; Sawamura, T.; Shimizu, K. Crystal structure and internal defects of equiatomic TiNi martensite. Phys. Status Solidi 1971, 5, 457–470. [Google Scholar] [CrossRef]
- Miyazaki, S.; Imai, T.; Igo, Y.; Otsuka, K. Effect of thermal cycling on the transformation temperatures of TiNi alloys. Metall. Trans. A 1986, 17, 2045–2051. [Google Scholar]
- Wu, S.K.; Lin, H.C.; Cheng, P.C. Multi-strengthening effects on the martensitic transformation temperatures of TiNi shape memory alloys. J. Mater. Sci. 1999, 34, 5669–5675. [Google Scholar] [CrossRef]
- Lin, H.C.; Wu, S.K. Determination of heat of transformation in a cold-rolled martensitic tini alloy. Metall. Trans. A 1993, 24, 293–299. [Google Scholar] [CrossRef]
- Lin, H.C. A Study of Binary TiNi Shape Memory Alloys. Ph.D. Thesis, Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, 1992. [Google Scholar]
Site | Ti (atomic %) | Ni (atomic %) | W (atomic %) | Ti/(Ni + W) | Phase |
---|---|---|---|---|---|
Matrix | 49.98 | 49.71 | 0.31 | 0.999 | Ti(Ni,W) |
Black particle | 66.76 | 32.94 | 0.30 | 2.008 | Ti2(Ni,W) |
White particle | 15.17 | 3.29 | 81.54 | - | Tungsten-rich solid solution |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-S.; Ou, S.-F.; Kuo, C.-H.; Yang, C.-H. Effects of Thermomechanical Treatment on Phase Transformation of the Ti50Ni49W1 Shape Memory Alloy. Metals 2020, 10, 527. https://doi.org/10.3390/met10040527
Huang T-S, Ou S-F, Kuo C-H, Yang C-H. Effects of Thermomechanical Treatment on Phase Transformation of the Ti50Ni49W1 Shape Memory Alloy. Metals. 2020; 10(4):527. https://doi.org/10.3390/met10040527
Chicago/Turabian StyleHuang, Tyau-Song, Shih-Fu Ou, Cheng-Hsien Kuo, and Cheng-Hsiu Yang. 2020. "Effects of Thermomechanical Treatment on Phase Transformation of the Ti50Ni49W1 Shape Memory Alloy" Metals 10, no. 4: 527. https://doi.org/10.3390/met10040527
APA StyleHuang, T. -S., Ou, S. -F., Kuo, C. -H., & Yang, C. -H. (2020). Effects of Thermomechanical Treatment on Phase Transformation of the Ti50Ni49W1 Shape Memory Alloy. Metals, 10(4), 527. https://doi.org/10.3390/met10040527