Evaluation of Biomedical Ti/ZrO2 Joint Brazed with Pure Au Filler: Microstructure and Mechanical Properties
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussion
3.1. Typical Interfacial Microstructure of Titanium/Au/ZrO2 Joint
3.2. Effects of Brazing Parameters on the Interfacial Microstructure of the Titanium/Au/ZrO2 Joints
3.3. Mechanical Properties and Fracture Morphology of Titanium/Au/ZrO2 Joint
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, L.; Li, J.; Xu, X.; Lei, X.; Zhang, K.; Wu, C.; Zhang, Z.; Shi, X.; Wang, X.; Ding, J. A Novel Cytocompatibility Strengthening Strategy of Ultrafine-Grained Pure Titanium. ACS Appl. Mater. Interfaces 2019, 11, 47680–47694. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kaliaraj, G.S. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. J. Mech. Behav. Biomed. Mater. 2018, 77, 106–115. [Google Scholar] [CrossRef]
- Gao, C.; Li, C.; Wang, C.; Qin, Y.; Wang, Z.; Yang, F.; Liu, H.; Chang, F.; Wang, J. Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. J. Alloys Compd. 2017, 726, 1072–1084. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Mishnaevsky, L.; Levashov, E.; Valiev, R.Z.; Segurado, J.; Sabirov, I.; Enikeev, N.; Prokoshkin, S.; Solov’yov, A.V.; Korotitskiy, A.; Gutmanas, E.; et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R Rep. 2014, 81, 1–19. [Google Scholar] [CrossRef]
- Korobkova, A.; Kazakbiev, A.; Zhukova, Y.; Sheremetyev, V.; Dubinskiy, S.; Filonov, M. Surface treatment of bulk and porous materials based on superelastic titanium alloys for medical implants. Mater. Today Proc. 2017, 4, 4664–4669. [Google Scholar] [CrossRef]
- Liu, L.; Xu, J.; Jiang, S. Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys. Metals 2016, 6, 221. [Google Scholar] [CrossRef] [Green Version]
- Reck, A.; Zeuner, A.T.; Zimmermann, M. Fatigue Behavior of Non-Optimized Laser-Cut Medical Grade Ti-6Al-4V-ELI Sheets and the Effects of Mechanical Post-Processing. Metals 2019, 9, 843. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, G.; Veljovic, D.; Zebic, M.L.; Miletic, V.; Palcevskis, E.; Petrovic, R.; Janackovic, D. Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts–The processing and application as dentin substitutes. Ceram. Int. 2018, 44, 18200–18208. [Google Scholar] [CrossRef]
- Marques, A.; Miranda, G.; Faria, D.; Pinto, P.; Silva, F.; Carvalho, O. Novel design of low modulus high strength zirconia scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 2019, 97, 375–384. [Google Scholar] [CrossRef]
- Dandoulaki, C.; Rigos, A.E.; Kontonasaki, E.; Karagiannis, V.; Kokoti, M.; Theodorou, G.S.; Papadopoulou, L.; Koidis, P. In vitro evaluation of the shear bond strength and bioactivity of a bioceramic cement for bonding monolithic zirconia. J. Prosthet. Dent. 2019, 122, e1–e167. [Google Scholar] [CrossRef] [PubMed]
- Stefanic, M.; Kosmač, T. β-TCP coatings on zirconia bioceramics: The importance of heating temperature on the bond strength and the substrate/coating interface. J. Eur. Ceram. Soc. 2018, 38, 5264–5269. [Google Scholar] [CrossRef]
- Volceanov, E.; Popa, C.G.; Volceanov, A.; Ciuca, S. Chemical stability in artificial saliva of zirconia bioceramics. Rev. Romana Mater. Rom. J. Mater. 2019, 49, 313–321. [Google Scholar]
- Cantner, F.; Cacaci, C.; Mucke, T.; Randelzhofer, P.; Hajto, J.; Beuer, F. Clinical performance of tooth- or implant-supported veneered zirconia single crowns: 42-month results. Clin. Oral Investig. 2019, 23, 4301–4309. [Google Scholar] [CrossRef]
- Parchanska-Kowalik, M.; Wolowiec-Korecka, E.; Klimek, L. Effect of chemical surface treatment of titanium on its bond with dental ceramics. J. Prosthet. Dent. 2018, 120, 470–475. [Google Scholar] [CrossRef]
- Smorygo, O.; Kim, J.S.; Kim, M.D.; Eom, T.G. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu–Ag–Ti filler/Ti active brazing joints. Mater. Lett. 2007, 61, 613–616. [Google Scholar] [CrossRef]
- Yadav, J.S.; Dabas, N.; Bhargava, A.; Malhotra, P.; Yadav, B.; Sehgal, M. Comparing two intraoral porcelain repair systems for shear bond strength in repaired cohesive and adhesive fractures, for porcelain-fused-to-metal restorations: An in vitro study. J. Indian Prosthodont. Soc. 2019, 19, 362–368. [Google Scholar] [CrossRef]
- Haselton, D.R.; Diaz-Arnold, A.M.; Dunne, J.T., Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J. Prosthet. Dentistry 2001, 86, 526–531. [Google Scholar] [CrossRef]
- Han, X.; Sawada, T.; Schille, C.; Schweizer, E.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F.; Spintzyk, S. Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes. Materials 2018, 11, 1801. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wei, W.; Yan, J.; Liu, W.; Li, N.; Li, H.; Xu, S. Microstructures and metal-ceramic bond properties of Co-Cr biomedical alloys fabricated by selective laser melting and casting. Mater. Sci. Eng. A 2019, 759, 594–602. [Google Scholar] [CrossRef]
- Li, C.; Huang, C.; Chen, L.; Si, X.; Chen, Z.; Qi, J.; Huang, Y.; Feng, J.; Cao, J. Microstructure and mechanical properties of the SiC/Nb joint brazed using AgCuTi+B4C composite filler metal. Int. J. Refract. Met. Hard Mater. 2019, 85, 105049. [Google Scholar] [CrossRef]
- Way, M.; Willingham, J.; Goodall, R. Brazing filler metals. Int. Mater. Rev. 2020, 65, 257–285. [Google Scholar] [CrossRef]
- Hu, S.P.; Hu, T.Y.; Lei, Y.Z.; Song, X.G.; Liu, D.; Cao, J.; Tang, D.Y. Microstructural evolution and mechanical properties of vacuum brazed Ti2AlNb alloy and Ti60 alloy with Cu75Pt filler metal. Vacuum 2018, 152, 340–346. [Google Scholar] [CrossRef]
- Sharma, A.; Kee, S.H.; Jung, F.; Heo, Y.; Jung, J.P. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis. J. Mater. Eng. Perform. 2016, 25, 1722–1728. [Google Scholar] [CrossRef]
- Sharma, A.; Ahn, B. Brazeability, Microstructure, and Joint Characteristics of ZrO2/Ti-6Al-4V Brazed by Ag-Cu-Ti Filler Reinforced with Cerium Oxide Nanoparticles. Adv. Mater. Sci. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Song, X.; Passerone, A.; Hu, S.; Bian, H.; Zhao, Y.; Wang, M.; Valenza, F. Interactions, joining and microstructure of Sn-Ti/ZrO2 system. J. Eur. Ceram. Soc. 2019, 39, 1525–1531. [Google Scholar] [CrossRef]
- Bian, H.; Fu, W.; Lei, Y.Z.; Song, X.G.; Liu, D.; Cao, J.; Feng, J.C. Wetting and low temperature bonding of zirconia metallized with Sn0.3Ag0.7Cu-Ti alloys. Ceram. Int. 2018, 44, 11456–11465. [Google Scholar] [CrossRef]
- Bian, H.; Zhou, Y.; Song, X.; Hu, S.; Shi, B.; Kang, J.; Feng, J. Reactive wetting and interfacial characterization of ZrO2 by SnAgCu-Ti alloy. Ceram. Int. 2019, 45, 6730–6737. [Google Scholar] [CrossRef]
- Feng, J.; Dai, X.; Wang, D.; Li, R.; Cao, J. Microstructure evolution and mechanical properties of ZrO2/TiAl joints vacuum brazed by Ag–Cu filler metal. Mater. Sci. Eng. A 2015, 639, 739–746. [Google Scholar] [CrossRef]
- Dai, X.; Cao, J.; Liu, J.; Wang, D.; Feng, J. Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag–Cu filler metal. Mater. Sci. Eng. A 2015, 646, 182–189. [Google Scholar] [CrossRef]
- Jain, P.K. Gold Nanoparticles for Physics, Chemistry, and Biology. Edited by Catherine Louis and Olivier Pluchery. Angew. Chem. Int. Ed. 2014, 53, 1197. [Google Scholar] [CrossRef]
- Manickam, P.; Vashist, A.; Madhu, S.; Sadasivam, M.; Sakthivel, A.; Kaushik, A.; Nair, M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry 2020, 131, 107373. [Google Scholar] [CrossRef] [PubMed]
- Iram, F.; Iqbal, M.S.; Khan, I.U.; Rasheed, R.; Khalid, A.; Khalid, M.; Aftab, S.; Shakoori, A.R. Synthesis and Biodistribution Study of Biocompatible (198)Au Nanoparticles by use of Arabinoxylan as Reducing and Stabilizing Agent. Biol. Trace Elem. Res. 2020, 193, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Shuai, H.L.; Wu, X.; Huang, K.J.; Zhai, Z.B. Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosens. Bioelectron. 2017, 94, 616–625. [Google Scholar] [CrossRef]
- Manohar, N.; Reynoso, F.J.; Diagaradjane, P.; Krishnan, S.; Cho, S.H. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography. Sci. Rep. 2016, 6, 22079. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109–120. [Google Scholar] [CrossRef]
- Murray, J.L. The Au-Ti (Gold-Titanium) system. Bull. Alloy. Phase Diagr. 1983, 4, 278–283. [Google Scholar] [CrossRef]
- Bian, H.; Song, X.; Hu, S.; Lei, Y.; Jiao, Y.; Duan, S.; Feng, J.; Long, W. Microstructure Evolution and Mechanical Properties of Titanium/Alumina Brazed Joints for Medical Implants. Metals 2019, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.F.; Lin, C.C. Interfacial reactions between zirconia and titanium. Scr. Mater. 1998, 39, 1333–1338. [Google Scholar] [CrossRef]
- Hanson, W.B.; Ironside, K.I.; Fernie, J.A. Active metal brazing of zirconia. Acta Mater. 2000, 48, 4673–4676. [Google Scholar] [CrossRef]
- Zhu, J.; Kamiya, A.; Yamada, T.; Shi, W.; Naganuma, K.; Mukai, K. Surface tension, wettability and reactivity of molten titanium in Ti/yttria-stabilized zirconia system. Mater. Sci. Eng. A 2002, 327, 117–127. [Google Scholar] [CrossRef]
- Wang, N.; Wang, D.P.; Yang, Z.W.; Wang, Y. Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals. Ceram. Int. 2016, 42, 12815–12824. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Zheng, K.; Lu, Y.; Yang, H. Microstructure evolution and mechanical properties of ZrO2/ZrO2 joints brazed with Ni–Ti filler metal. Mater. Res. Express 2019, 6, 126547. [Google Scholar] [CrossRef]
Spot | Ti | Au | Zr | O | Possible Phases |
---|---|---|---|---|---|
A | 75.67 | 22.48 | 0.02 | 1.83 | Ti3Au |
B | 49.60 | 47.67 | 0.06 | 2.67 | TiAu |
C | 32.05 | 61.52 | 0.03 | 6.40 | TiAu2 |
D | 18.44 | 73.80 | 0.04 | 7.72 | TiAu4 |
E | 40.29 | 2.07 | 3.02 | 54.62 | TiO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Bian, H.; Fu, W.; Song, X.; Feng, J.; Long, W.; Niu, H. Evaluation of Biomedical Ti/ZrO2 Joint Brazed with Pure Au Filler: Microstructure and Mechanical Properties. Metals 2020, 10, 526. https://doi.org/10.3390/met10040526
Lei Y, Bian H, Fu W, Song X, Feng J, Long W, Niu H. Evaluation of Biomedical Ti/ZrO2 Joint Brazed with Pure Au Filler: Microstructure and Mechanical Properties. Metals. 2020; 10(4):526. https://doi.org/10.3390/met10040526
Chicago/Turabian StyleLei, Yuzhen, Hong Bian, Wei Fu, Xiaoguo Song, Jicai Feng, Weimin Long, and Hongwei Niu. 2020. "Evaluation of Biomedical Ti/ZrO2 Joint Brazed with Pure Au Filler: Microstructure and Mechanical Properties" Metals 10, no. 4: 526. https://doi.org/10.3390/met10040526
APA StyleLei, Y., Bian, H., Fu, W., Song, X., Feng, J., Long, W., & Niu, H. (2020). Evaluation of Biomedical Ti/ZrO2 Joint Brazed with Pure Au Filler: Microstructure and Mechanical Properties. Metals, 10(4), 526. https://doi.org/10.3390/met10040526