Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Saboori, A.; Gallo, D.; Biamino, S.; Fino, P.; Lombardi, M. An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties. Appl. Sci. 2017, 7, 883. [Google Scholar] [CrossRef] [Green Version]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of directed energy deposition-based additive manufacturing in repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef] [Green Version]
- Jahn, S.; Matthes, S.; Scheller, D.; Huber, M. Process principles for metal additive manufacturing. In Proceedings of the IIW Commissions I, IV, XII, SG 212 Joint Intermediate Meeting, Greifswald, Germany, 7–12 July 2019. [Google Scholar]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Wohlers, T. Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates: Fort Collins Col, CO, USA, 2014. [Google Scholar]
- Ding, J.; Colegrove, P.; Mehnen, J.; Ganguly, S.; Sequeira Almeida, P.M.; Wang, F.; Williams, S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci. 2011, 50, 3315–3322. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; White, D.R.; DebRoy, T. Current issues and problems in laser welding of automotive aluminium alloys. Int. Mater. Rev. 1999, 44, 238–266. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, M.; Chen, H.; Chen, J.; Li, P.; Yang, Y.P. Effect of humidity on porosity, microstructure and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Mater. Des. 2015, 85, 309–317. [Google Scholar]
- Reschetnik, W.; Brüggemann, J.-P.; Aydinöz, M.E.; Grydin, O.; Hoyer, K.-P.; Kullmer, G.; Richard, H.A. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy. Procedia Struct. Integr. 2016, 2, 3040–3048. [Google Scholar] [CrossRef] [Green Version]
- Khazan, P.; Stroth, M.; Freiße, H.; Köhler, H. Mechanical Properties of Large Three-Dimensional Specimens Build through Direct Powder Deposition. WGP Congr. 2014, 1018, 525–532. [Google Scholar] [CrossRef]
- Brüggemann, J.-P.; Risse, L.; Kullmer, G.; Richard, H.A. Optimization of the fracture mechanical properties of additively manufactured EN AW-7075. Procedia Struct. Integr. 2018, 13, 311–316. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.C.; Prashanth, K.G.; Eckert, J.; Scudino, S. Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties. J. Alloys Compd. 2017, 707, 287–290. [Google Scholar] [CrossRef]
- Singh, A.; Ramakrishnan, A.; Dinda, G. Direct laser metal deposition of Al 7050 alloy. SAE Tech. Paper 2017. [Google Scholar] [CrossRef]
- Dai, D.; Gu, D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int. J. Mach. Tools Manuf. 2016, 100, 14–24. [Google Scholar] [CrossRef]
- Haboudou, A.; Peyre, P.; Vannes, A.B.; Peix, G. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mater. Sci. Eng. A 2003, 363, 40–52. [Google Scholar] [CrossRef]
- Jeurgens, L.P.H.; Sloof, W.G.; Tichelaar, F.D.; Mittemeijer, E.J. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J. Appl. Phys. 2002, 92, 1649–1656. [Google Scholar] [CrossRef]
- Davis, J.R. Properties and Selection, 10th ed.; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
Al | Si | Fe | Mn | Zn | Mg | Cu | Cr |
---|---|---|---|---|---|---|---|
89.9 | 0.11 | 0.09 | 0.01 | 5.51 | 2.42 | 1.60 | 0.21 |
Parameters | Single Tracks for Shielding Gas Investigations | Single Tracks for Porosity Investigations |
---|---|---|
Laser power | 2.4 kW | 2 kW to 4 kW |
Laser spot diameter | 2.0 mm | 4.5 mm |
Shielding gas flow conv. | 7.5 L/min (centric) | - |
Shielding gas flow with additional shroud | 7.5 L/min (centric) | 7.5 L/min (centric) |
30 L/min (additional shroud) | 30 L/min (additional shroud) | |
Carrier gas flow | 5.5 L/min | 4 L/min |
Powder feed rate | (9.9 ± 0.2) g/min | (9.3 ± 0.3) g/min |
Substrate material | EN AW-5083 | EN AW-5083 |
Welding speed | 400 mm/min | 400 mm/min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langebeck, A.; Bohlen, A.; Rentsch, R.; Vollertsen, F. Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition. Metals 2020, 10, 579. https://doi.org/10.3390/met10050579
Langebeck A, Bohlen A, Rentsch R, Vollertsen F. Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition. Metals. 2020; 10(5):579. https://doi.org/10.3390/met10050579
Chicago/Turabian StyleLangebeck, Anika, Annika Bohlen, Rüdiger Rentsch, and Frank Vollertsen. 2020. "Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition" Metals 10, no. 5: 579. https://doi.org/10.3390/met10050579
APA StyleLangebeck, A., Bohlen, A., Rentsch, R., & Vollertsen, F. (2020). Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition. Metals, 10(5), 579. https://doi.org/10.3390/met10050579