Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experiments
2.4. Equations
3. Results
3.1. ACH Precipitation
3.2. ACH Calcination for SGA Production
3.3. ACH Calcination to Produce Amorphous ACH400
3.4. Comparison of SGA-C and ACH400
3.5. SGA Production from Amorphous Alumina
4. Conclusions
- The temperature of the salting-out process affects the ACH crystal size and impurities content. At T = 0 and 95 °C, the total amount of impurities is 0.1 and 0.06 wt.%, and the average particle size is 85 and 135 μm, respectively;
- ACH calcination at T = 400 °C produces amorphous alumina with the specific surface of 36.9 m2/g and content of chlorine ions of 5.27 wt.%;
- ACH calcination at T = 1000 °C allows SGA production with the specific surface area of 71.2 m2/g and chlorine ion content of 0.15 wt.%;
- Alkaline recrystallization of amorphous alumina obtained after the calcination of ACH at 400 °C at T = 60 °C and Na2O = 150 g/L, allows the average particle size of coarse Al(OH)3 to be increased from 76 to 99 microns;
- The calcination of recrystallized Al(OH)3 at T = 1000 °C and maintenance for 1 h allows SGA with a content of chlorine ions of 0.004 wt.% to be obtained.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anawar, H.M.; Strezov, V.; Adyel, T.M.; Ahmed, G. Sustainable and Economically Profitable Reuse of Bauxite Mining Waste with Life Cycle Assessment. In Sustainable and Economic Waste Management Resource Recovery Techniques; Anawar, H.M., Strezov, V., Abhilash, Eds.; CRC Press: Boca Raton, MA, USA, 2019; p. 328. ISBN 9780429279072. [Google Scholar]
- Smith, P. The processing of high silica bauxites - Review of existing and potential processes. Hydrometallurgy 2009, 98, 162–176. [Google Scholar] [CrossRef]
- Senyuta, A.; Panov, A.; Suss, A.; Layner, Y. Innovative Technology for Alumina Production from Low-Grade Raw Materials. In Light Metals 2013; Springer: Cham, Switzerland, 2013; pp. 203–208. ISBN 978-3-319-65136-1. [Google Scholar]
- Chen, J.; Li, X.; Cai, W.; Shi, Y.; Hui, X.; Cai, Z.; Jin, W.; Fan, J. High-efficiency extraction of aluminum from low-grade kaolin via a novel low-temperature activation method for the preparation of poly-aluminum-ferric-sulfate coagulant. J. Clean. Prod. 2020, 257, 120399. [Google Scholar] [CrossRef]
- Brichkin, V.N.; Kurtenkov, R.V.; Eldeeb, A.B.; Bormotov, I.S. State and development options for the raw material base of aluminum in non-bauxite regions. Obogashchenie Rud 2019, 2019, 31–37. [Google Scholar] [CrossRef]
- Barry, T.S.; Uysal, T.; Birinci, M.; Erdemoğlu, M. Thermal and Mechanical Activation in Acid Leaching Processes of Non-bauxite Ores Available for Alumina Production—A Review. Mining, Metall. Explor. 2019, 36, 557–569. [Google Scholar] [CrossRef]
- Zinoveev, D.V.; Grudinskii, P.I.; Dyubanov, V.G.; Kovalenko, L.V.; Leont’ev, L.I. Global recycling experience of red mud—A review. Part i: Pyrometallurgical methods. Izv. Ferr. Metall. 2018, 61, 843–858. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, K.; Gou, Y.; Wei, S.; Shen, W.; Cheng, F. Aluminum extraction technologies from high aluminum fly ash. Rev. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. J. Environ. Manage. 2018, 212, 278–291. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.; Zhang, G.; Shi, Q.; Feng, H. Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy 2019, 187, 158–167. [Google Scholar] [CrossRef]
- Ding, J.; Ma, S.; Shen, S.; Xie, Z.; Zheng, S.; Zhang, Y. Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Manag. 2017, 60, 375–387. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Lyu, G.; Guo, F.; Zhang, W.; Zhang, Y. Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. J. Clean. Prod. 2018, 188, 456–465. [Google Scholar] [CrossRef]
- Project Energy Strategy of the Russian Federation for the Period Until 2035. Available online: https://minenergo.gov.ru/node/1920 (accessed on 18 December 2019).
- Shi, Y.; Jiang, K.-X.; Zhang, T.-A. A cleaner electrolysis process to recover alumina from synthetic sulfuric acid leachate of coal fly ash. Hydrometallurgy 2020, 191, 105196. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Li, L.; Wang, Y.; Li, M. Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution. Chem. Pap. 2019, 73, 2289–2295. [Google Scholar] [CrossRef]
- Guo, C.; Zou, J.; Ma, S.; Yang, J.; Wang, K. Alumina extraction from coal fly ash via low-temperature potassium bisulfate calcination. Minerals 2019, 9, 585. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Zhang, H.; Cheng, F. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid–alkali–based alternate method. J. Clean. Prod. 2019, 230, 302–313. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Liu, D.; Hou, X.; Zou, J.; Ma, X.; Shang, F.; Wang, Z. Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride. Environ. Technol. (United Kingd.) 2019, 40, 1568–1575. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Zhou, G.; Gu, Y. Investigation on the Effect of Roasting and Leaching Parameters on Recovery of Gallium from Solid Waste Coal Fly Ash. Metals (Basel) 2019, 9, 1251. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ye, Q.; Deng, B.; Luo, J.; Rao, M.; Peng, Z.; Jiang, T. Extraction of scandium from scandium-rich material derived from bauxite ore residues. Hydrometallurgy 2018, 176, 62–68. [Google Scholar] [CrossRef]
- Pan, J.; Nie, T.; Vaziri Hassas, B.; Rezaee, M.; Wen, Z.; Zhou, C. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere 2020, 248, 126112. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Xue, F.; Cheng, H.; Cheng, F. Phase equilibrium andseparation of AlCl3-FeCl3-HCl-H2Osystem [AlCl3-FeCl3-HCl-H2O 体系的相平衡及相分离]. Guocheng Gongcheng Xuebao/The Chin. J. Process Eng. 2020, 20, 318–323. [Google Scholar]
- Long, W.; Ting-An, Z.; Guozhi, L.; Weiguang, Z.; Yan, L.; Zhihe, D.; Liping, N. A new green process to produce activated alumina by spray pyrolysis. Green Process. Synth. 2018, 7, 464–469. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, L.; Zhang, J.; Lv, H.; Guo, Y.; Cheng, F. Experimental investigation on the direct crystallization of high-purity AlCl3·6H2O from the AlCl3-NaCl-H2O(-HCl-C2H5OH) system. Hydrometallurgy 2019, 185, 238–243. [Google Scholar] [CrossRef]
- Yu, X.; Liu, M.; Zheng, Q.; Chen, S.; Zou, F.; Zeng, Y. Measurement and Correlation of Phase Equilibria of Ammonium, Calcium, Aluminum, and Chloride in Aqueous Solution at 298.15 K. J. Chem. Eng. Data 2019, 64, 3514–3520. [Google Scholar] [CrossRef]
- Yu, X.; Zheng, Q.; Wang, L.; Liu, M.; Cheng, X.; Zeng, Y. Solid-liquid phase equilibrium determination and correlation of ternary systems NH4Cl+AlCl3+H2O, MgCl2+AlCl3+H2O and SrCl2+AlCl3+H2O at 298 K. Fluid Phase Equilib. 2020, 507, 112426. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. J. Clean. Prod. 2018, 179, 93–102. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Cui, H.; Cheng, F.; Yang, F. Crystallization behavior of AlCl3·6H2O in hydrochloric system. Huagong Xuebao/CIESC J. 2014, 65, 3960–3967. [Google Scholar]
- Valeev, D.; Kunilova, I.; Alpatov, A.; Mikhailova, A.; Goldberg, M.; Kondratiev, A. Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminum extraction. J. Clean. Prod. 2019, 218, 192–201. [Google Scholar]
- Valeev, D.; Kunilova, I.; Alpatov, A.; Varnavskaya, A.; Ju, D. Magnetite and carbon extraction from coal fly ash using magnetic separation and flotation methods. Minerals 2019, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Sturges, H.A. The Choice of a Class Interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [Google Scholar] [CrossRef]
- Miles, G.L. Some Studies in the System AlCl3-FeCl3-KCl-NaCl-HCl-H2O at 25, 30 an4 35°. J. Am. Chem. Soc. 1947, 69, 1716–1719. [Google Scholar] [CrossRef]
- Guo, Y.; Lv, H.; Yang, X.; Cheng, F. AlCl3·6H2O recovery from the acid leaching liquor of coal gangue by using concentrated hydrochloric inpouring. Sep. Purif. Technol. 2015, 151, 117–183. [Google Scholar] [CrossRef]
- Christov, C.; Dickson, A.G.; Moller, N. Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H-Al-Na-K-Cl-H2O system from 0 to 100∈°C. J. Solution Chem. 2007, 36, 1495–1523. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, L.; Cao, L.; Zhao, J.; Xue, F.; Cheng, F. Phase Diagram of AlCl3-FeCl3-H2O(-HCl) Salt Water System at 298.15 K and Its Application in the Crystallization of AlCl3·6H2O. J. Chem. Eng. Data 2019, 64, 5089–5094. [Google Scholar] [CrossRef]
- Pak, V.I.; Kirov, S.S.; Mamzurina, O.I.; Nalivayko, A.Y. Understanding the regularities of aluminum chloride hexahydrate crystallization from hydrochloric acid solutions resultant from leaching of Russian kaolin clays. Part 1. process kinetics. Tsvetnye Met. 2020, 2020, 47–53. [Google Scholar] [CrossRef]
- Golubev, V.O.; Chistyakov, D.G.; Brichkin, V.N.; Postika, M.F. Population balance of aluminate solution decomposition: Physical modelling and model setup. Tsvetnye Met. 2019, 2019, 75–81. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yang, C.; Zhang, Y. Precipitating sandy aluminium hydroxide from sodium aluminate solution by the neutralization of sodium bicarbonate. Hydrometallurgy 2009, 98, 52–57. [Google Scholar] [CrossRef]
- Elduayen-Echave, B.; Lizarralde, I.; Larraona, G.S.; Ayesa, E.; Grau, P. A New Mass-Based Discretized Population Balance Model for Precipitation Processes: Application to Struvite Precipitation. Water Res. 2019, 155, 26–41. [Google Scholar] [CrossRef]
- Li, J.; Addai-Mensah, J.; Thilagam, A.; Gerson, A.R. Growth mechanisms and kinetics of gibbsite crystallization: Experimental and quantum chemical study. Cryst. Growth Des. 2012, 12, 3096–3103. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z.; Asselin, E. Solubility of AlCl3·6H2O in the Fe(II) + Mg + Ca + K + Cl + H2O system and its salting-out crystallization with FeCl2. Ind. Eng. Chem. Res. 2013, 52, 14282–14290. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Kirik, S.D.; Shubin, A.A.; Blokhina, I.A.; Denisov, V.M.; Irtugo, L.A. Thermolysis of acidic aluminum chloride solution and its products. Ceram. Int. 2013, 39, 3843–3848. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, Y.; Wang, Z.; Shi, Z.; Gao, B.; Hu, X.; Tao, W.; Liu, F.; Yu, J. Study on the thermal decomposition of aluminium chloride hexahydrate. Can. Metall. Q. 2018, 57, 235–244. [Google Scholar] [CrossRef]
- Suss, A.; Senyuta, A.; Kravchenya, M.; Smirnov, A.; Panov, A. The quality of alumina produced by the hydrochloric acid process and potential for improvement. In Proceedings of the The International Committee for Study of Bauxite, Alumina & Aluminium (ICSOBA), Dubai, UAE, 29 November 2015; Volume 44, pp. 1–8. [Google Scholar]
- Zhao, L. Calcination of aluminum chloride hexahydrate (ach) for alumina production: Implications for alumina extraction from aluminum rich fly ash (ARFA). Arch. Metall. Mater. 2018, 63, 235–240. [Google Scholar]
- Pak, V.I.; Kirov, S.S.; Nalivaiko, A.Y.; Ozherelkov, D.Y.; Gromov, A.A. Obtaining alumina from kaolin clay via aluminum chloride. Materials (Basel). 2019, 12, 3938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Cheng, F.; Zhou, J. Preparation of high purity AlCl3·6H2O crystals from coal mining waste based on iron(III) removal using undiluted ionic liquids. Sep. Purif. Technol. 2016, 167, 45–54. [Google Scholar] [CrossRef]
- Senyuta, A.; Panov, A.; Milshin, O.; Slobodyanyuk, E.; Smirnov, A. Method for Producing Metallurgical Alumina (Variants); Rospatent: Moscow, Russia, 2016; p. 20. [Google Scholar]
- Panias, D.; Asimidis, P.; Paspaliaris, I. Solubility of boehmite in concentrated sodium hydroxide solutions: Model development and assessment. Hydrometallurgy 2001, 59, 15–29. [Google Scholar] [CrossRef]
- Çelikel, B.; Demir, G.K.; Kayacl, M.; Baygul, M.; Suarez, C.E. Precipitation area upgrade at ETI aluminum. In Light Metals; Suarez, C.E., Ed.; Springer: Cham, Switzerland, 2012; pp. 129–133. [Google Scholar]
- Liu, G.; Li, Z.; Qi, T.; Li, X.; Zhou, Q.; Peng, Z. Two-Stage Process for Precipitating Coarse Boehmite from Sodium Aluminate Solution. JOM 2017, 69, 1888–1893. [Google Scholar] [CrossRef]
- Li, X.-B.; Yan, L.; Zhao, D.-F.; Zhou, Q.-S.; Liu, G.-H.; Peng, Z.-H.; Yang, S.-S.; Qi, T.-G. Relationship between Al(OH)3 solubility and particle size in synthetic Bayer liquors. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2013, 23, 1472–1479. [Google Scholar] [CrossRef]
- Li, H.; Addai-Mensah, J.; Thomas, J.C.; Gerson, A.R. The influence of Al(III) supersaturation and NaOH concentration on the rate of crystallization of Al(OH)3 precursor particles from sodium aluminate solutions. J. Colloid Interface Sci. 2005, 286, 511–519. [Google Scholar] [CrossRef]
- Alex, T.C.; Kumar, R.; Roy, S.K.; Mehrotra, S.P. Mechanical Activation of Al-oxyhydroxide Minerals—A Review. Miner. Process. Extr. Metall. Rev. 2016, 37, 1–26. [Google Scholar] [CrossRef]
- Alex, T.C.; Kumar, R.; Roy, S.K.; Mehrotra, S.P. Towards ambient pressure leaching of boehmite through mechanical activation. Hydrometallurgy 2014, 144–145, 99–106. [Google Scholar] [CrossRef]
- Li, X.-B.; Feng, G.-T.; Zhou, Q.-S.; Peng, Z.-H.; Liu, G.-H. Phenomena in late period of seeded precipitation of sodium aluminate solution. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2006, 16, 947–950. [Google Scholar] [CrossRef]
- Wind, S.; Raahauge, B.E. Experience with commissioning new generation gas suspension calciner. Miner. Met. Mater. Ser. 2016, 155–162. [Google Scholar]
Al | Ca | Fe | Ti | Na | K | Si | Sc | Cltotal |
---|---|---|---|---|---|---|---|---|
22.3 | 3.8 | 2.5 | 0.3 | 0.2 | 0.1 | 4.5 × 10−3 | 2.2 × 10−3 | 335 |
Salting-out Temperature | Cr | Fe | K | Mn | Na | P | Si | Ti | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
0 °C | 0.0038 | 0.01 | 0.0073 | 0.0005 | 0.039 | 0.021 | 0.011 | 0.0075 | 0.00037 | 0.0001 |
25 °C | 0.0020 | 0.0027 | 0.0083 | 0.00016 | 0.0075 | 0.017 | 0.013 | 0.0060 | 0.00036 | 0.0001 |
50 °C | 0.0004 | 0.0035 | 0.0085 | 0.00007 | 0.0075 | 0.013 | 0.021 | 0.0027 | 0.00032 | 0.0001 |
75 °C | 0.0004 | 0.0041 | 0.0091 | 0.0001 | 0.0075 | 0.012 | 0.021 | 0.0022 | 0.00027 | 0.0002 |
95 °C | 0.0003 | 0.0041 | 0.0110 | 0.00005 | 0.0090 | 0.011 | 0.025 | 0.0012 | 0.000021 | 0.0003 |
Samples | Cr | Fe | K | Mn | Na | P | Si | Ti | V | Zn | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|
ACH | 0.0041 | 0.015 | 0.0081 | 0.0006 | 0.043 | 0.022 | 0.012 | 0.0094 | 0.00044 | 0.0002 | - |
ACH400 | 0.073 | 0.027 | 0.015 | 0.001 | 0.074 | 0.038 | 0.022 | 0.016 | 0.0008 | 0.0004 | 5.27 |
SGA-C | 0.076 | 0.029 | 0.016 | 0.001 | 0.081 | 0.041 | 0.023 | 0.018 | 0.0009 | 0.0004 | 0.15 |
Cr2O3 | Fe2O3 | K2O | MnO2 | Na2O | P2O5 | SiO2 | TiO2 | V2O5 | ZnO | Cl |
---|---|---|---|---|---|---|---|---|---|---|
0.0005 | 0.01 | 0.008 | 0.0001 | 0.31 | 0.0009 | 0.003 | 0.002 | 0.0004 | 0.0001 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeev, D.; Shoppert, A.; Mikhailova, A.; Kondratiev, A. Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina. Metals 2020, 10, 585. https://doi.org/10.3390/met10050585
Valeev D, Shoppert A, Mikhailova A, Kondratiev A. Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina. Metals. 2020; 10(5):585. https://doi.org/10.3390/met10050585
Chicago/Turabian StyleValeev, Dmitry, Andrei Shoppert, Alexandra Mikhailova, and Alex Kondratiev. 2020. "Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina" Metals 10, no. 5: 585. https://doi.org/10.3390/met10050585
APA StyleValeev, D., Shoppert, A., Mikhailova, A., & Kondratiev, A. (2020). Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina. Metals, 10(5), 585. https://doi.org/10.3390/met10050585