Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust
Abstract
:1. Introduction
- Acidic leaching using strong acid, e.g., sulfuric acid, hydrochloric acid.
- Acidic leaching using organic lixiviants, e.g., oxalic acid, citric acid.
- Alkaline leaching using bases, e.g., sodium hydroxide, sodium carbonate.
- Alkaline leaching using organic lixiviants, e.g., nitrilotriacetic acid (NTA).
2. Species Distribution Modeling for Leaching Efficiency and Selectivity Prediction
3. Experimental
3.1. Materials and Instrumentation
3.2. Leaching Procedure
- CE Zn or Cu concentration in supernatant solution (mg/L)
- Co Zn or Cu content in EAF dust (mg/g)
- m mass of EAF dust used in leaching (g)
- V leaching agent volume (L)
- CZ, Zn or Cu concentration in pregnant leach solution (mg/L).
- CM, other metal concentration in pregnant leach solution (mg/L).
4. Results and Discussion
4.1. Characterization
4.2. Effect of pH
4.3. Effect of MSG Concentration
4.4. Effect of Pulp Density
4.5. Kinetic Studies (Effect of Leaching Time and Temperature)
4.6. Monosodium Glutamate Recovery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ejtemaei, M.; Gharabaghi, M.; Irannajad, M. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface Sci. 2014, 206, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.M.; dos Neto, J.M.R.; da Cunha, C.J. Mineral phases of weathered and recent electric arc furnace dust. J. Hazard. Mater. 2008, 154, 417–425. [Google Scholar] [CrossRef]
- Suetens, T.; Klaasen, B.; Van Acker, K.; Blanpain, B. Comparison of electric arc furnace dust treatment technologies using exergy efficiency. J. Clean. Prod. 2014, 65, 152–167. [Google Scholar] [CrossRef]
- Youcai, Z.; Stanforth, R. Extraction of zinc from zinc ferrites by fusion with caustic soda. Miner. Eng. 2000, 13, 1417–1421. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.F.; Wang, S.; Chen, F.; Tan, Y.J.; Zheng, F.Q.; Yang, L.Z. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int. J. Miner. Metall. Mater. 2020, 13, 1417–1421. [Google Scholar] [CrossRef]
- Lupi, C.; Pilone, D. Effectiveness of saponified D2EHPA in Zn(II) selective extraction from concentrated sulphuric solutions. Miner. Eng. 2020, 150, 106278. [Google Scholar] [CrossRef]
- Zhu, Z.; Cheng, C.Y. A Study on zinc recovery from leach solutions using ionquest 801 and its mixture with D2EHPA. Miner. Eng. 2012, 39, 117–123. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, Y.; Zhang, X.; Peng, C.; Cheng, Y.; Chen, W. Removal of Zn(II) from manganese-zinc chloride waste liquor using ion-exchange with D201 resin. Hydrometallurgy 2019, 190, 105171. [Google Scholar] [CrossRef]
- Rudnik, E. Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinning. Hydrometallurgy 2019, 188, 256–263. [Google Scholar] [CrossRef]
- Youcai, Z.; Chenglong, Z.; Youcai, Z.; Chenglong, Z. Electrowinning of Zinc and Lead from Alkaline Solutions. In Pollution Control and Resource Reuse for Alkaline Hydrometallurgy of Amphoteric Metal Hazardous Wastes; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Halli, P.; Hamuyuni, J.; Revitzer, H.; Lundström, M. Selection of leaching media for metal dissolution from electric arc furnace dust. J. Clean. Prod. 2017, 164, 265–276. [Google Scholar] [CrossRef]
- Kukurugya, F.; Vindt, T.; Havlík, T. Behavior of Zinc, Iron and Calcium from Electric Arc Furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: Thermodynamic and kinetic aspects. Hydrometallurgy 2015, 154, 20–32. [Google Scholar] [CrossRef]
- Montenegro, V.; Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P. Hydrometallurgical treatment of EAF dust by direct sulphuric acid leaching at atmospheric pressure. Waste Biomass Valoriz. 2016, 7, 1531–1548. [Google Scholar] [CrossRef]
- Rudnik, E. Investigation of industrial waste materials for hydrometallurgical recovery of Zinc. Miner. Eng. 2019, 139. [Google Scholar] [CrossRef]
- Teo, Y.Y.; Lee, H.S.; Low, Y.C.; Choong, S.W.; Low, K.O. Hydrometallurgical extraction of Zinc and Iron from Electric Arc Furnace Dust (EAFD) Using Hydrochloric Acid. J. Phys. Sci. 2018, 29, 49–54. [Google Scholar] [CrossRef]
- Kusumaningrum, R.; Fitroturokhmah, A.; Sinaga, G.S.T.; Wismogroho, A.S.; Widayatno, W.B.; Diguna, L.J.; Amal, M.I. Study: leaching of zinc dust from electric arc furnace waste using oxalic acid. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Halli, P.; Hamuyuni, J.; Leikola, M.; Lundström, M. Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Miner. Eng. 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Dutra, A.J.B.; Paiva, P.R.P.; Tavares, L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng. 2006, 19, 478–485. [Google Scholar] [CrossRef]
- Palimakaą, P.; Pietrzyk, S.; Stępień, M.; Ciećko, K.; Nejman, I. Zinc Recovery from steelmaking dust by hydrometallurgical methods. Metals (Basel) 2018, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ling, H.; Yang, T.; Liu, W.; Chen, L. Selective Leaching of Zinc from Electric Arc Furnace dust by a hydrothermal reduction method in a sodium hydroxide system. J. Clean. Prod. 2019, 224, 536–544. [Google Scholar] [CrossRef]
- Al-Makhadmeh, L.A.; Batiha, M.A.; Al-Harahsheh, M.S.; Altarawneh, I.S.; Rawadieh, S.E. The effectiveness of Zn leaching from EAFD using caustic soda. Water. Air. Soil Pollut. 2018, 229, 33. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Shi, S.; He, H.; Rao, Y.; Luo, G.; Lu, F. Study on recovery of Zinc from metallurgical solid waste residue by ammoniacal leaching. In Minerals, Metals and Materials Series; Springer: Berlin/Heidelberg Germany, 2019. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Yang, T.; Rao, S.; Hu, W.; Liu, W.; Chen, L. Selective leaching of Zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy 2017, 169, 219–228. [Google Scholar] [CrossRef]
- Yang, T.; Rao, S.; Zhang, D.; Wen, J.; Liu, W.; Chen, L.; Zhang, X. Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions. Hydrometallurgy 2016, 161, 107–111. [Google Scholar] [CrossRef]
- Herrero, D.; Arias, P.L.; Güemez, B.; Barrio, V.L.; Cambra, J.F.; Requies, J. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning. Miner. Eng. 2010, 23, 511–517. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A.; Tanda, B.C. A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Miner. Eng. 2017, 108, 53–66. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J.; Karrech, A.; Attar, M. Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in-situ leaching applications. Miner. Eng. 2019, 138, 112–118. [Google Scholar] [CrossRef]
- Prasetyo, E. Monosodium Glutamate For Simple Photometric Iron Analysis. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Prasetyo, E. Simple method of copper analysis using monosodium glutamate and its application in ore analysis. Mineralogia 2012, 43, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Prasetyo, E.; Bahfie, F.; Al Muttaqii, M.; Handoko, A.S.; Nurjaman, F. Zinc extraction from electric arc furnace dust using amino acid leaching. In AIP Conference Proceeding; AIP Publishing: College Park, MA, USA, 2020. [Google Scholar]
- Gustafsson, J.P. Visual MINTEQ Ver. 3.1. Available online: https://vminteq.lwr.kth.se/visual-minteq-ver-3-1/ (accessed on 4 August 2019).
- Leonard, M. Vogel’s textbook of quantitative chemical analysis. Endeavour 1990, 14, 100. [Google Scholar] [CrossRef]
- Anderegg, G. Critical survey of stability constants of EDTA complexes. In Critical Survey of Stability Constants of EDTA Complexes; Pergamon: Oxford, UK, 1977. [Google Scholar] [CrossRef]
- Anderegg, G. Critical survey of stability constants of Nta complexes. Pure Appl. Chem. 2013, 54, 2693–2758. [Google Scholar] [CrossRef]
- Kiss, T.; Sovago, I.; Gergely, A. Critical survey of stability constants of complexes of glycine. Pure Appl. Chem. 2007, 63, 597–638. [Google Scholar] [CrossRef]
- Dickinson, C.F.; Heal, G.R. Solid-liquid diffusion controlled rate equations. Thermochim. Acta 1999, 340, 89–103. [Google Scholar] [CrossRef]
- Rao, S.; Yang, T.; Zhang, D.; Liu, W.F.; Chen, L.; Hao, Z.; Xiao, Q.; Wen, J.F. Leaching of low grade zinc oxide ores in nh4cl-nh3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy 2015, 158, 101–106. [Google Scholar] [CrossRef]
Ions | log Kf EDTA [33] | log Kf NTA [34] | log Kf Glycinate [35] | log Kf Glutamate (This Study) |
---|---|---|---|---|
Zn2+ | 16.4 | 10.7 | 5.5 | 8.9 |
Cu2+ | 18.4 | 12.7 | 8.3 | 14.9 |
Fe3+ | 24.2 | 24.3 | 10.3 | 11.8 |
Mg2+ | 8.7 | 8.2 | 3.5 | 1.8 |
Ca2+ | 10.6 | 7.0 | 1.4 | 1.1 |
Component | MgO | Al2O3 | SiO2 | SO3 | K2O | CaO | TiO2 | MnO | Fe2O3 | NiO | CuO | ZnO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | 0.59 | 36.0 | 2.22 | 0.34 | 0.12 | 2.23 | 0.18 | 0.87 | 2.72 | 0.60 | 1.29 | 51.8 | 99.2 |
Element | Cr | Cu | Fe | Ni | Pb | Zn |
---|---|---|---|---|---|---|
wt.% | 0.016 ± 0.002 | 0.898 ± 0.021 | 1.432 ± 0.029 | 0.522 ± 0.008 | 0.075 ± 0.016 | 38.652 ± 0.428 |
Elements | O K | Mg K | Al K | Si K | Ca K | Fe K | Zn K |
---|---|---|---|---|---|---|---|
Before leaching (wt %) | 24.08 | 1.62 | 15.19 | 1.06 | 0.57 | 0.37 | 56.95 |
After leaching (wt %) | 35.53 | 0.57 | 20.42 | 0.90 | 1.00 | 1.30 | 6.99 |
Element | Model | Equation | Coefficient of Correlation, R2 | ||
---|---|---|---|---|---|
30 °C | 55 °C | 80 °C | |||
Zn | SCM (chemical reaction control) | kt = 1 − (1 − R)1/3 | 0.768 | 0.715 | 0.710 |
SPM (film diffusion) | kt = 1 − (1 − R)2/3 | 0.717 | 0.635 | 0.622 | |
Interface transfer and diffusion | kt = 1/3 ln(1 − x) − [1 − (1 − x)−1/3] | 0.886 | 0.916 | 0.895 | |
Cu | SCM (chemical reaction control) | kt = 1 − (1 − R)1/3 | 0.880 | 0.847 | 0.912 |
SPM (film diffusion) | kt = 1 − (1 − R)2/3 | 0.860 | 0.802 | 0.885 | |
Interface transfer and diffusion | kt = 1/3 ln(1 − x) − [1 − (1 − x) − 1/3] | 0.930 | 0.969 | 0.931 |
Element | k (min−1) | Ea (kJ/mol) | R2 | ||
---|---|---|---|---|---|
30 °C | 55 °C | 80 °C | |||
Zn | 7.3 × 10−4 | 1.9 × 10−3 | 5.4 × 10−3 | 35.5 | 0.995 |
Cu | 3.0 × 10−4 | 1.0 × 10−3 | 2.2 × 10−3 | 35.6 | 0.994 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasetyo, E.; Anderson, C.; Nurjaman, F.; Al Muttaqii, M.; Handoko, A.S.; Bahfie, F.; Mufakhir, F.R. Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust. Metals 2020, 10, 644. https://doi.org/10.3390/met10050644
Prasetyo E, Anderson C, Nurjaman F, Al Muttaqii M, Handoko AS, Bahfie F, Mufakhir FR. Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust. Metals. 2020; 10(5):644. https://doi.org/10.3390/met10050644
Chicago/Turabian StylePrasetyo, Erik, Corby Anderson, Fajar Nurjaman, Muhammad Al Muttaqii, Anton Sapto Handoko, Fathan Bahfie, and Fika Rofiek Mufakhir. 2020. "Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust" Metals 10, no. 5: 644. https://doi.org/10.3390/met10050644
APA StylePrasetyo, E., Anderson, C., Nurjaman, F., Al Muttaqii, M., Handoko, A. S., Bahfie, F., & Mufakhir, F. R. (2020). Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust. Metals, 10(5), 644. https://doi.org/10.3390/met10050644