Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Anodic Oxidation of Fe70Cr15B15 in Ionic Liquid (IL)
- The increase in the oxide film thickness on the surface of the electrode as a result of the electrochemical galvanostatic oxidation;
- The discontinuity of the oxide film due to a loss of the adhesion with the metal surface (detachment) [23].
3.2. Electrochemical Corrosion in an 0.1 M Na2SO4 Aqueous Solution
- Initial untreated AA sample;
- Sample that was chemically etched with a benzoic acid (0.013 M)/benzoate (0.013 M) buffer in acetone (BB);
- Sample chemically etched and electrochemically treated in IL;
- Mechanically abraded sample;
- Sample mechanically abraded and electrochemically treated in IL.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghidelli, M.; Gravier, S.; Blandin, J.-J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.-P.; Pardoen, T. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015, 90, 232–241. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Luo, C.Y.; Xi, X.K.; Zhao, D.Q.; Pan, M.X.; Wang, W.H. Synthesis and elastic properties of amorphous steels with high Fe content. Intermetallics 2006, 14, 1107–1111. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Ketov, S.V.; Trifonov, A.S.; Churymov, A.Y. Surface structure and properties of metallic glasses. J. Alloys Compd. 2018, 742, 512–517. [Google Scholar] [CrossRef]
- Imai, K.; Zhou, X.; Liu, X. Application of Zr and Ti-based bulk metallic glasses for orthopaedic and dental device materials. Metals 2020, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Winters, G. Stainless Steels for Medical and Surgical Applications; Nutt, M., Ed.; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar] [CrossRef]
- Wang, S.L.; Yi, S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 °C. Intermetallics 2010, 18, 1950–1953. [Google Scholar] [CrossRef]
- Huynh, V.; Ngo, N.K.; Golden, T.D. Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications. Int. J. Biomater. 2019, 2019, 3806504. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, M.A.L.; Laverde-Cataño, D.A.; Lozano, D.; Martinez-Cazares, G.; Bedolla-Gil, Y. Influence of boron addition on the microstructure and the corrosion resistance of CoCrMo Alloy. Metals 2019, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zhang, D. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of FeNiCr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. Energy 2014, 64, 242–247. [Google Scholar] [CrossRef]
- O’Laoire, C.; Timmins, B.; Kremer, L.; Holmes, J.D.; Morris, M.A. Analysis of the acid passivation of stainless steel. Anal. Lett. 2006, 39, 2255–2271. [Google Scholar] [CrossRef]
- Sowmiah, S.; Srinivasadesikan, V.; Tseng, M.-C.; Chu, Y.-H. On the chemical stabilities of ionic liquids. Molecules 2009, 14, 3780–3813. [Google Scholar] [CrossRef] [Green Version]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim. Acta 2006, 51, 4420–4425. [Google Scholar] [CrossRef]
- Lebedeva, O.; Dzhungurova, G.; Kultin, D.; Kustov, L.; Zakharov, A.; Kalmykov, K.; Chernikova, E.; Krasovskii, V. Ionic liquids based on imidazolium cation in platinum and titanium electropolishing. Green Chem. 2011, 13, 1004–1008. [Google Scholar] [CrossRef]
- Uda, T.; Tsuchimoto, K.; Nakagawa, H.; Murase, K.; Nose, Y.; Awakura, Y. Electrochemical polishing of metallic titanium in ionic liquid. Mater. Trans. 2011, 52, 2061–2066. [Google Scholar] [CrossRef] [Green Version]
- Loftis, J.D.; Abdel-Fattah, T.M. Nanoscale electropolishing of high-purity nickel with an ionic liquid. Int. J. Miner. Metall. Mater. 2019, 26, 649–656. [Google Scholar] [CrossRef]
- Kalmykov, K.B.; Dmitrieva, N.E.; Lebedeva, O.K.; Root, N.V.; Kultin, D.Y.; Kustov, L.M. Formation of a regular cellular structure on the surface of Zr67Ni30Si3 alloy at electrochemical polishing in ionic liquids. Russ. Chem. B 2016, 65, 2801–2804. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Kudryavtsev, I.; Root, N.; Kustov, L. The role of the initial hexagonal self-ordering in anodic nanotube growth in ionic liquid. Electrochem. Commun. 2017, 75, 78–81. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kudryavtsev, I.; Kultin, D.; Dzhungurova, G.; Kalmykov, K.; Kustov, L. Self-organized hexagonal nanostructures on nickel and steel formed by anodization in 1-Butyl-3-methylimidazolium bis(triflate)imide. J. Phys. Chem. C 2014, 118, 21293–21298. [Google Scholar] [CrossRef]
- Idrissi, H.; Gravier, S.; Ghidelli, M.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Mater. 2017, 131, 246–259. [Google Scholar] [CrossRef]
- Makletsov, V.G.; Kanunnikova, O.M.; Lubnin, A.N. The effect of oxidation of amorphous Fe70Cr15B15 alloy on its corrosion behavior in the acidic sulfate media. Prot. Met. 2006, 42, 555–559. [Google Scholar] [CrossRef]
- Zhijie, Y.; Jinfu, L.; Shunrong, H.; Honghua, W.; Yaohe, Z. Study of the crystallization kinetics of Zr60Al15Ni25 bulk glassy alloy by differential scanning calorimetry. Mater. Trans. 2003, 44, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Wood, G.; Stringer, J. The adhesion of growing oxide scales to the substrate. J. Phys. IV 1993, 3, C9-65–C9-74. [Google Scholar] [CrossRef]
- Liu, Y.; Skeldon, P.; Thompson, G.E.; Zhou, X.; Habazaki, H.; Shimizu, K. Influence of surface treatment on detachment of anodic films from Al-Mg alloys. Corros. Sci. 2001, 43, 2349–2357. [Google Scholar] [CrossRef]
- Liu, L.Y.; Alexander, M.; Koroleva, E.; Skeldon, P.; Thompson, G.E.; Bailey, P.; Noakes, T.C.Q.; Shimizu, K.; Habazaki, H. Detachment of alumina films from aluminium by100 keV H+ions. Surf. Interface Anal. 2002, 33, 318–321. [Google Scholar] [CrossRef]
- Gentile, M.; Koroleva, E.V.; Skeldon, P.; Thompson, G.E.; Bailey, P.; Noakes, T.C.Q. Influence of grain orientation on Zinc enrichment and surface morphology of Al-Zn alloy. Surf. Interface Anal. 2010, 42, 287–292. [Google Scholar] [CrossRef]
- Pisarek, M.; Kedzierzawski, P.; Janik-Czachor, M.; Kurzydlowski, K.J. Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution. J. Solid State Electrochem. 2009, 13, 283–291. [Google Scholar] [CrossRef]
- Naka, M.; Hashimoto, K.; Masumoto, T. Effect of metalloidal elements on corrosion resistance of amorphous iron-chromium alloys. J. Non Cryst. Solids 1978, 28, 403–413. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Miller, A.E.; Chang, H.C.; Banerjee, G.; Yuzhakov, V.; Yue, D.-F.; Ricker, R.E.; Jones, S.; Eastman, J.A.; Baugher, E.; et al. Electrochemically assembled quasi-periodic quantum dot arrays. Nanotechnology 1996, 7, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Hernаndez-Lopez, J.M.; Nеmcovа, A.; Zhong, X.I.; Liu, H. Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolyte. Electrochim. Acta 2014, 138, 124–131. [Google Scholar] [CrossRef]
- Vignal, V.; Roux, J.C.; Flandrois, S.; Fevrier, A. Nanoscopic studies of stainless steel electropolishing. Corros. Sci. 2000, 42, 1041–1053. [Google Scholar] [CrossRef]
- Shcherbakov, I. Theory of dissolution of binary alloys and the tamman rule. Prot. Met. 2005, 41, 30–35. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Gao, Y.; Gui, Y.; Zhu, M. Corrosion behavior of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci. 2012, 54, 60–67. [Google Scholar] [CrossRef]
- Nowak, W.B.; Okorie, B.A. Electrochemical (Corrosion) behavior of amorphous/microcrystalline iron plated Fe-Cr alloy films. Corrosion 1982, 38, 314–318. [Google Scholar] [CrossRef]
- Pokatilov, V.S.; Dmitrieva, T.G.; Pokatilov, V.V.; Kitaev, V.V. Local structure of Fe70Cr15B15 X-ray amorphous alloy. Bull. Russ. Acad. Sci. Phys. 2012, 76, 840–842. [Google Scholar] [CrossRef]
- Archer, M.D.; McKim, R.J. Unusual stress-corrosion cracks observed in glassy Fe-40Ni-14P-6B alloy. J. Mater. Sci. 1983, 18, 1125–1135. [Google Scholar] [CrossRef]
- Zhou, X.; Habazaki, H.; Shimizu, K.; Skeldon, P.; Thompson, G.E.; Wood, G.C. Enrichment-dependent anodic oxidation of zinc in Al-Zn alloys. Corros. Sci. 1996, 38, 1563–1577. [Google Scholar] [CrossRef]
- Shuang, S.; Ding, Z.Y.; Chung, D.; Shib, S.Q.; Yang, Y. Corrosion resistant nanostructured eutectic high entropy alloy. Corros. Sci. 2019, 164, 108315. [Google Scholar] [CrossRef]
Sample | Mean Value (at. %) | Cr:Fe | ||
---|---|---|---|---|
Cr | Fe | O | ||
Initial | 16.3 | 70.4 | - | 1:4.32 |
Untreated | 14.1 | 61.9 | 2.4 | 1:4.37 |
Etched | 15.8 | 67.2 | - | 1:4.25 |
Etched and anodized | 15.8 | 68.2 | 7.1 | 1:4.31 |
Sample | Ecorr (mV) | PR × 105 (Ohm) |
---|---|---|
AA | −125 | 30.3 |
BB | −293 | 7.67 |
Sample chemically etched and electrochemically treated in IL | −439 | 8.63 |
Mechanically abraded sample | −79.4 | 3.88 |
Sample mechanically abraded and electrochemically treated in IL | +379 | 2.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, O.; Snytko, V.; Kuznetsova, I.; Kalmykov, K.; Kultin, D.; Root, N.; Philippova, S.; Dunaev, S.; Zakharov, A.; Kustov, L. Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Metals 2020, 10, 583. https://doi.org/10.3390/met10050583
Lebedeva O, Snytko V, Kuznetsova I, Kalmykov K, Kultin D, Root N, Philippova S, Dunaev S, Zakharov A, Kustov L. Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Metals. 2020; 10(5):583. https://doi.org/10.3390/met10050583
Chicago/Turabian StyleLebedeva, Olga, Victoria Snytko, Irina Kuznetsova, Konstantin Kalmykov, Dmitry Kultin, Natalia Root, Svetlana Philippova, Sergei Dunaev, Alexandre Zakharov, and Leonid Kustov. 2020. "Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid" Metals 10, no. 5: 583. https://doi.org/10.3390/met10050583
APA StyleLebedeva, O., Snytko, V., Kuznetsova, I., Kalmykov, K., Kultin, D., Root, N., Philippova, S., Dunaev, S., Zakharov, A., & Kustov, L. (2020). Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Metals, 10(5), 583. https://doi.org/10.3390/met10050583