Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration
Abstract
:1. Introduction
2. Problem Definition
Critical Buckling Stress
3. Numerical Model
4. Results and Discussion
4.1. Influence of Poisson’s Ratio
4.2. Influence of Yield Limit
4.3. Influence of Crack Length-to-Sheet Width
4.4. Influence of the Sheet Aspect Ratio
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolzon, G.; Shahmardani, M.; Liu, R.; Zappa, E. Failure analysis of thin metal foils. Frat. Integr. Strutt. 2017, 11, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Puntel, E.; Deseri, L.; Fried, E. Wrinkling of a stretched thin sheet. J. Elast. 2011, 105, 137–170. [Google Scholar] [CrossRef]
- Kao-Walter, S. On the Fracture of Thin Laminates. Ph.D. Thesis, Series No. 2004:07. Dep. Mech. Eng., Blekinge Institute of Technology, Karlskrona, Sweden, 2004. [Google Scholar]
- Fu, C.; Wang, T.; Xu, F.; Huo, Y.; Potier-Ferry, M. A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain. J. Mech. Phys. Solids 2019, 124, 446–470. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Puntel, E.; Fried, E. Numerical study of the wrinkling of a stretched thin sheet. Int. J. Solids Struct. 2012, 49, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Bolzon, G.; Shahmardani, M.; Liu, R.; Zappa, E. A combined experimental-numerical investigation of the failure mode of thin metal foils. Procedia Struct. Integr. 2017, 3, 168–171. [Google Scholar] [CrossRef]
- Bolzon, G.; Shahmardani, M. Numerical simulation of non-standard tensile tests of thin metal foils. AIP Conf. Proc. 2018, 1922, 080011. [Google Scholar]
- Najarzadeh, L.; Movahedian, B.; Azhari, M. Stability analysis of the thin plates with arbitrary shapes subjected to non-uniform stress fields using boundary element and radial integration methods. Eng. Anal. Bound. Elem. 2018, 87, 111–121. [Google Scholar] [CrossRef]
- Nguyen-Thoi, T.; Bui-Xuan, T.; Phung-Van, P.; Nguyen-Xuan, H.; Ngo-Thanh, P. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Comp. Struct. 2013, 125, 100–113. [Google Scholar] [CrossRef]
- Mo, J.; Cheung, P.T.; Sherman, C.P.; Das, R. Chapter 11 - Thin Plate Deflection. Demystifying Numer. Models 2019, 235–255. [Google Scholar]
- Bolzon, G.; Shahmardani, M. Macroscopic response and decohesion models of metal-polymer laminates. Eng. Trans. 2017, 65, 53–59. [Google Scholar]
- Andreasson, E.; Kao-Walter, S.; Ståhle, P. Micro-mechanisms of a laminated packaging material during fracture. Eng. Frac. Mech. 2014, 127, 313–326. [Google Scholar] [CrossRef]
- Davidovitch, B.; Schroll, R.D.; Vella, D.; Adda-Bedia, M.; Cerdad, E.A. Prototypical model for tensional wrinkling in thin sheets. PNAS 2011, 108, 18227–18232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente de Carvalho, R. Wrinkling of Thin Sheets under Tension. Master’s Thesis, Técnico Lisboa, Lisbon, Portugal, November 2015. [Google Scholar]
- Datta, P.K.; Biswas, S. Research advances on tension buckling behaviour of aerospace structures: A review. Int. J. Aeronaut. Space. 2011, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Markstrӧm, K.; Stoåkers, B. Buckling of cracked members under tension. Int. J. Solids Struct. 1980, 16, 217–229. [Google Scholar] [CrossRef]
- Shaw, D.; Huang, Y.H. Buckling behavior of a central cracked thin plate under tension. Eng. Frac. Mech. 1990, 35, 1019–1027. [Google Scholar] [CrossRef]
- Riks, E.; Rankin, C.C.; Brogan, F.A. The buckling behavior of a central crack in a plate under tension. Eng. Frac. Mech. 1992, 43, 529–548. [Google Scholar] [CrossRef] [Green Version]
- Brighenti, R. Buckling of cracked thin-plates under tension or compression. Thin Walled Struct. 2005, 43, 209–224. [Google Scholar] [CrossRef]
- Seif, A.E.; Kabir, M.Z. An efficient analytical model to evaluate the first two local buckling modes of finite cracked plate under tension. Lat. Am. J. Solids Struct. 2015, 12, 2078–2093. [Google Scholar] [CrossRef] [Green Version]
- Rammerstorfer, F.G. Buckling of elastic structures under tensile loads. Acta Mech. 2018, 229, 881–900. [Google Scholar] [CrossRef] [Green Version]
- Amiri Rad, A.; Panahandeh-Shahraki, D. Buckling of cracked functionally graded plates under tension. Thin Walled Struct. 2014, 84, 26–33. [Google Scholar] [CrossRef]
- Wang, T.; Fu, C.; Xu, F.; Huo, Y.; Potier-Ferry, M. On the wrinkling and restabilization of highly stretched sheets. Int. J. Eng. Sci. 2019, 136, 1–16. [Google Scholar] [CrossRef]
- Brighenti, R. Buckling sensitivity analysis of cracked thin plates under membrane tension or compression loading. Nucl. Eng. Des. 2009, 239, 965–980. [Google Scholar] [CrossRef]
- Guz, A.N.; Dyshel’, M.S.; Nazarenko, V.M. Fracture and stability of materials and structural members with cracks: Approaches and results. Int. Appl. Mech. 2004, 40, 1323–1359. [Google Scholar] [CrossRef]
- Dyshel, M.S. Stability and fracture of plates with a central and an edge crack under tension. Int. Appl. Mech. 2002, 38, 472–476. [Google Scholar] [CrossRef]
- Ståhle, P.; Li, C.; Bjerkén, C. Crack tip singularity in a buckling thin sheet. In Proceedings of the 19th Nordic Seminar on Computational Mechanics, Lund, Sweden, 20–21 October 2006; pp. 43–46. [Google Scholar]
- Isida, M. Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions. Int. J. Fract. 1971, 7, 301–316. [Google Scholar] [CrossRef]
- HKS Inc. ABAQUS/Standard, Theory and User’s Manuals, Version 2019; HKS Inc.: Pawtucket, RI, USA, 2019. [Google Scholar]
Length (L, mm) | Width (W, mm) | Thickness (h, mm) | Crack Length (2a, mm) |
---|---|---|---|
250 | 100 | 0.009 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahmardani, M.; Ståhle, P.; Islam, M.S.; Kao-Walter, S. Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration. Metals 2020, 10, 582. https://doi.org/10.3390/met10050582
Shahmardani M, Ståhle P, Islam MS, Kao-Walter S. Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration. Metals. 2020; 10(5):582. https://doi.org/10.3390/met10050582
Chicago/Turabian StyleShahmardani, Mahdieh, Per Ståhle, Md Shafiqul Islam, and Sharon Kao-Walter. 2020. "Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration" Metals 10, no. 5: 582. https://doi.org/10.3390/met10050582
APA StyleShahmardani, M., Ståhle, P., Islam, M. S., & Kao-Walter, S. (2020). Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration. Metals, 10(5), 582. https://doi.org/10.3390/met10050582