A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dental Implants
- M-12 (Oxtein S.L., Zaragoza, Spain): Double internal hexagon conical implant, grade IV titanium and sand-blasted Large-grift Acid-etched (SLA, surface treated with argon plasma). It presents coronal microthreads, double U-threads in the middle third and minithreads in the roots which increase the contact surface with the bone.
- ASTRA (Dentsply Sirona, Charlotte, NC, USA): Parallel wall internal double hexagon implant, grade IV titanium, surface blasted with titanium dioxide and modified with fluoride.
2.2. Photoelastic Models
Loadings Applied
2.3. Photoelastic Analysis
- σ1 − σ2 the stress for each isochromatic fringe.
- e the thickness of the resin plate.
- n the fringe order.
- f the fringe factor.
2.4. Finite Elements Analysis (FEA)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goiato, M.C.; Shibayama, R.; Gennari Filho, H.; de Medeiros, R.A.; Pesqueira, A.A.; dos Santos, D.M.; de Araújo, C.A. Stress distribution in implant-supported prostheses using different connection systems and cantilever lengths: Digital photoelasticity. J. Med. Eng. Technol. 2016, 40, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Li, Q.; Li, W.; Duckmanton, N.; Swain, M. Mandibular bone remodeling induced by dental implant. J. Biomech. 2010, 43, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Gaviria, L.; Salcido, J.P.; Guda, T.; Ong, J.L. Current trends in dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Las Casas, E.B.; Ferreira, P.C.; Cimini, C.A., Jr.; Toledo, E.M.; Barra, L.P.; Cruz, M. Comparative 3D finite element stress analysis of straight and angled wedge-shaped implant design. Int. J. Oral Maxillofac. Implant. 2008, 23, 215–222. [Google Scholar]
- Coray, R.; Zeltner, M.; Özcan, M. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. J. Mech. Behav. Biomed. Mater. 2016, 62, 333–346. [Google Scholar] [CrossRef]
- Azcarate-Velázquez, F.; Castillo-Oyagüe, R.; Oliveros-López, L.G.; Torres-Lagares, D.; Martínez-González, Á.J.; Pérez-Velasco, A.; Lynch, C.D.; Gutiérrez-Pérez, J.L.; Serrera-Figallo, M.Á. Influence of bone quality on the mechanical interaction between implant and bone: A finite element analysis. J. Dent. 2019, 88, 103161. [Google Scholar] [CrossRef]
- Khorshid, H.E.; Hamed, H.A.; Aziz, E.A. Complications, risk factors, and failures of immediate functional loading of implants placed in the completely edentulous maxillae: A report of 3 consecutive cases. Implant Dent. 2014, 23, 125–131. [Google Scholar] [CrossRef]
- Marcián, P.; Zikmund, T.; Kaiser, J.; Borák, L.; Wolff, J.; Horáčková, L. Micro finite element analysis of dental implants under different loading conditions. Comput. Biol. Med. 2018, 96, 157–165. [Google Scholar] [CrossRef]
- Geramizadeh, M.; Katoozian, H.; Amid, R.; Kadkhodazadeh, M. Comparison of finite element results with photoelastic stress analysis around dental implants with different threads. Dent. Med. Probl. 2018, 55, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Abduo, J.; Bennani, V.; Waddell, N.; Lyons, K.; Swain, M. Assessing the fit of implant fixed prostheses: A critical review. Int. J. Oral Maxillofac. Implant. 2010, 25, 506–515. [Google Scholar]
- Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous andcortical mandibular bone—A feasibility study. J. Biomech. 2014, 47, 3830–3836. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Turri, A. Extent and location of bone loss at dental implants in patients with peri-implantitis. J. Biomech. 2011, 44, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.I.; Lee, Y.; Kim, N.Y.; Kim, Y.L.; Cho, H.W. A photoelastic stress analysis of screw- and cement-retained implant prostheses with marginal gaps. Clin. Implant. Dent. Relat. Res. 2013, 15, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Lekholm, U.; Adell, R.; Brånemark, P.-I. Complications. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry; Brånemark, P.-I., Zarb, G.A., Albrektsson, T., Eds.; Quintessence, Pubishing, Co.: Chicago, IL, USA, 1985; pp. 233–240. [Google Scholar]
- Assif, D.; Marshak, B.; Schmidt, A. Accuracy of implant impression techniques. Int. J. Oral. Maxillofac. Implants. 1996, 11, 216–222. [Google Scholar] [CrossRef]
- Pellizzer, E.P.; Carli, R.I.; Falcón-Antenucci, R.M.; Verri, F.R.; Goiato, M.C.; Villa, L.M. Photoelastic analysis of stress distribution with different implant systems. J. Oral. Implantol. 2014, 40, 117–122. [Google Scholar] [CrossRef]
- Brunski, J.B. In vivo bone response to biomechanical loading at the bone dental-implant interface. Adv. Dent. Res. 1999, 13, 99–119. [Google Scholar] [CrossRef]
- Kasemo, B.; Lausmaa, J. Biomaterial and implant surfaces: A surface science approach. Int. J. Oral Maxillofac. Implants. 1988, 3, 247–259. [Google Scholar]
- Zanatta, L.C.; Dib, L.L.; Gehrke, S.A. Photoelastic stress analysis surrounding different implant designs under simulated static loading. J. Craniofac. Surg. 2014, 25, 1068–1071. [Google Scholar] [CrossRef]
- Baggi, L.; Cappelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J. Prosthet. Dent. 2008, 100, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Misch, C.E.; Strong, T. Scientific rationale for dental implant design. In Contemporary Implant Dentistry; Misch, C.E., Ed.; Elsevier: St. Louis, MO, USA, 1999; pp. 200–229. [Google Scholar]
- Chun, H.J.; Cheong, S.Y.; Han, J.H.; Heo, S.J.; Chung, J.P.; Rhyu, I.C.; Choi, Y.C.; Baik, H.K.; Ku, Y.; Kim, M.H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J. Oral Rehabil. 2002, 29, 565–574. [Google Scholar] [CrossRef]
- Abususse, N.H.; Pagni, G.; Rebaudi, A.; Wang, H.-L. The effect of thread pattern implant osseointegration. Clin. Oral Implants Res. 2009, 21, 129–136. [Google Scholar]
- Barbier, L.; Schepers, E. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int. J. Oral Maxillofac. Implants. 1997, 12, 215–223. [Google Scholar] [PubMed]
- Tonella, B.P.; Pellizzer, E.P.; Falcón-Antenucci, R.M.; Ferraço, R.; de Faria Almeida, D.A. Photoelastic analysis of biomechanical behavior of single and multiple fixed partial prostheses with different prosthetic connections. J. Craniofac. Surg. 2011, 22, 2060–2263. [Google Scholar] [CrossRef] [PubMed]
- Balfour, A.; O’Brien, G. Comparative study of antirotational single tooth abutments. J. Prosthet. Dent. 1995, 73, 36–43. [Google Scholar] [CrossRef]
- Çehreli, M.; Duyck, J.; De Cooman, M.; Puers, R.; Naert, I. Implant design and interface force transfer. A photoelastic and strain-gauge analysis. Clin. Oral Implants Res. 2004, 15, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; Tonella, B.P.; do Prado Ribeiro, P.; Pellizzer, E.P. Methods used for assessing stresses in buccomaxillary prostheses: Photoelasticity, finite element technique, and extensometry. J. Craniofac. Surg. 2009, 20, 561–564. [Google Scholar] [CrossRef]
- Shinde, S.B.; Hirmukhe, S.S.; Dhatrak, P.N. Photoelastic stress analysis: A review. In Proceedings of the 5th National Conference RDME, Pune, India, 10–11 March 2016. [Google Scholar]
- Philips, J.W. Experimental Stress Analysis, 2nd ed.; Board of Trustees at University of Illinois: Urbana, IL, USA, 1998. [Google Scholar]
- Muñiz, C.; Castillo, W. Ensayos de Fotoelasticidad en Probetas de Metacrilato; Facultad de Ciencias, Tecnología y Ambiente, Universidad Centroamericana: Manuagua, Nicaragua, 2010. [Google Scholar]
- Vitantonio, E.M.; Reynoso, A.C.; Rasia, R.J. Análisis Experimental de Tensiones en Piezas Dentarias con Diversas Preparaciones y Desgastes; Facultad de Odontología, Universidad Nacional del Rosario: Rosario, Argentina, 2003. [Google Scholar]
- Raaj, G.; Manimaran, P.; Kumar, C.D.; Sadan, D.S.; Abirami, M. Comparative Evaluation of Implant Designs: Influence of Diameter, Length, and Taper on Stress and Strain in the Mandibular Segment-A Three-Dimensional Finite Element Analysis. J. Pharm. Bioallied. Sci. 2019, 11 (Suppl. 2), S347–S354. [Google Scholar]
- Rees, J.S. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J. Oral Rehabil. 2001, 28, 425–432. [Google Scholar] [CrossRef]
- Geramizadeh, M.; Katoozian, H.; Amid, R.; Kadkhodazadeh, M. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis. J. Korean Assoc. Oral Maxillofac. Surg. 2018, 44, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Gosavi, S.P.; Dhatrak, P.N.; Narkar, K.M. Optimisation of dental implant. Int. Eng. Res. J. 2015, 3, 4319–4323. [Google Scholar]
- Pirjamalineisiani, A.; Sarafbidabad, M.; Jamshidi, N.; Esfahani, F.A. Finite element analysis of post dental implant fixation in drilled mandible sites. Comput. Biol. Med. 2017, 81, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misch, C.E. Dental Implant Prosthetics, 2nd ed.; Mosby: St. Louis, MO, USA, 2015. [Google Scholar]
- Alkan, I.; Sertgöz, A.; Ekici, B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J. Prosth. Dent. 2004, 91, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Guo, E. Mechanical properties of cortical and cancellous bone tissue. In Bone Mechanics Handbook, 2nd ed.; Cowin, S.C., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 1–23. [Google Scholar]
- Rangert, B.; Jemt, T.; Jörneus, L. Forces and moments on Branemark implants. Int. J. Oral Maxillofac. Implant. 1989, 4, 241–247. [Google Scholar]
- Kuroshima, S.; Nakano, T.; Ishimoto, T.; Sasaki, M.; Inoue, M.; Yasutake, M.; Sawase, T. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomater. 2017, 48, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Noyama, Y.; Nakano, T.; Ishimoto, T.; Sakai, T.; Yoshikawa, H. Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone 2013, 52, 659–667. [Google Scholar] [CrossRef]
- Ishimoto, T.; Nakano, T.; Umakoshi, Y.; Yamamoto, M.; Tabata, Y. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using rBMP-2. J. Bone Miner. Res. 2013, 28, 1170–1179. [Google Scholar] [CrossRef]
- Cicciù, M.; Cervino, G.; Bramanti, E.; Lauritano, F.; Lo Gudice, G.; Scappaticci, L.; Rapparini, A.; Guglielmino, E.; Risitano, G. FEM analysis of mandibular prosthetic overdenture supported by dental implants: Evaluation of different retention methods. Comput. Math. Methods Med. 2015, 2015, 943839. [Google Scholar] [CrossRef] [Green Version]
Data Employed in the Numerical Models | Young Modulus (GPa) | Poisson’s Ratio |
---|---|---|
Implants | 110.0 | 0.3 |
Resin | 16.8 | 0.4 |
Colour | Fringe Order | Colour | Fringe Order |
---|---|---|---|
Black | 0 | Blue | 2.2 |
Grey | 0.28 | Green | 2.4 |
White | 0.45 | Yellow | 2.7 |
Yellow | 0.6 | Pink | 3 |
Orange | 0.8 | Blue | 3.1 |
Purple | 1 | Green | 3.3 |
Blue | 1.08 | Yellow | 3.7 |
Green | 1.22 | Pink | 4 |
Yellow | 1.39 | Green | 4.3 |
Orange | 1.63 | Yellow | 4.7 |
Pink | 2 | Pink | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herráez-Galindo, C.; Torres-Lagares, D.; Martínez-González, Á.-J.; Pérez-Velasco, A.; Torres-Carranza, E.; Serrera-Figallo, M.-A.; Gutiérrez-Pérez, J.-L. A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants. Metals 2020, 10, 648. https://doi.org/10.3390/met10050648
Herráez-Galindo C, Torres-Lagares D, Martínez-González Á-J, Pérez-Velasco A, Torres-Carranza E, Serrera-Figallo M-A, Gutiérrez-Pérez J-L. A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants. Metals. 2020; 10(5):648. https://doi.org/10.3390/met10050648
Chicago/Turabian StyleHerráez-Galindo, Cristina, Daniel Torres-Lagares, Álvaro-José Martínez-González, Andrea Pérez-Velasco, Eusebio Torres-Carranza, María-Angeles Serrera-Figallo, and José-Luis Gutiérrez-Pérez. 2020. "A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants" Metals 10, no. 5: 648. https://doi.org/10.3390/met10050648
APA StyleHerráez-Galindo, C., Torres-Lagares, D., Martínez-González, Á. -J., Pérez-Velasco, A., Torres-Carranza, E., Serrera-Figallo, M. -A., & Gutiérrez-Pérez, J. -L. (2020). A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants. Metals, 10(5), 648. https://doi.org/10.3390/met10050648