Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results
Abstract
:1. Introduction
2. Synthesis and Properties of ZrO2 Ceramic Powders Doped with Mixed REOs
3. REO-Doped ZrO2-Based Thermal Barrier Coatings
4. Perspectives for Using Zirconia Doped with Multicomponent Mixed REOs for TBC: Preliminary Results
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darolia, R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 2013, 58, 315–348. [Google Scholar] [CrossRef]
- Castro, J.; Nafsin, N.J. Direct measurements of quasi-zero grain boundary energies in Ceramics. J. Mater. Res. 2017, 32, 166–173. [Google Scholar]
- Dragut, D.V.; Badilita, V.; Motoc, A.M.; Piticescu, R.R.; Zhao, J.; Hijji, H.; Conte, L. Thermal stability and field assisted sintering of cerium-doped YSZ ceramic nanoparticles obtained via a hydrothermal process. Manuf. Rev. 2017, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Sobetkii, A.; Rinaldi, A.; Cuesta-Lopez, S.; Prakasam, M.; Largeteau, A.; Plaiasu, G.; Piticescu, R.R. Novel high temperature oxide ceramic coatings: Synthesis, properties and applications. In Proceedings of the International Conference FiMPART, Bordeaux, France, 9−12 July 2017. [Google Scholar]
- Ekström, M.; Thibblin, A.; Tjernberg, A.; Blomqvist, C.; Jonsson, S. Evaluation of internal thermal barrier coatings for exhaust manifolds. Surf. Coat. Technol. 2015, 272, 198–212. [Google Scholar] [CrossRef]
- Patnaik, P.; Huang, X.; Singh, J. State of the Art and Future Trends in the Development of Thermal Barrier Coating Systems. In Innovative Missile Systems; Meeting Proceedings RTO-MP-AVT−135, Paper 38; RTO: Neuilly-sur-Seine, France, 2006; Volume 38, p. 20. [Google Scholar]
- Boke, Y.E.; Altun, O. Heat transfer analysis of thermal barrier coatings on a metal substrate. J. Therm. Sci. Technol. 2013, 33, 101–109. [Google Scholar]
- Mehdi, K.; Soheil, N. The evolution of fracture process zones in as-received and oxidized air. Surf. Coat. Technol. 2019, 377, 124885. [Google Scholar]
- Kadir, M.D.; Yasin, O.; Hayrettin, A.; Abdullah, C.K. Evaluation of oxidation and thermal cyclic behavior of YSZ. Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs. Surf. Coat. Technol. 2019, 371, 262–275. [Google Scholar]
- Lei, G.; Chenglong, Z.; Mingzhu, L.; Wei, S.; Zhaoyang, Z.; Fuxing, Y. Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4 + V2O5 molten salt. Ceram. Int. 2017, 43, 2780–2785. [Google Scholar]
- Cao, X.; Vassen, R.; Stoever, D. Ceramic Materials for Thermal Barrier Coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Venkatesh, G.; Subramanian, R.; John Berchmans, L. Phase Analysis and Microstructural Investigations of Ce2Zr2O7 for High-Temperature Coatings on Ni-Base Superalloy Substrates. High Temp. Mater. Proc. 2019, 38, 773–782. [Google Scholar] [CrossRef]
- Bahamirian, M.; Hadavi, S.M.M.; Farvizia, M.; Rahimipoura, M.R.; Keyvanic, A. Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications. Ceram. Int. 2019, 45, 7344–7350. [Google Scholar] [CrossRef]
- Miller, R.A. Thermal Barrier Coatings for Aircraft Engines: History and Directions. J. Therm. Spray Technol. 1997, 6, 35. [Google Scholar] [CrossRef]
- Prakasam, M.; Valsan, S.; Lu, Y.; Balima, F.; Lu, W.; Piticescu, R.; Largeteau, A. Nanostructured Pure and Doped Zirconia: Syntheses and Sintering for SOFC and Optical Applications. Sinter. Technol. Method Appl. 2018, 85. [Google Scholar] [CrossRef] [Green Version]
- Ultramet Advanced Materials Solutions. Available online: https://ultramet.com/ceramic-protective-coatings/refractory-oxides/ (accessed on 29 May 2020).
- Dong, T.S.; Wang, R.; Di, Y.L.; Wang, H.D.; Lia, G.L.; Fu, B.G. Mechanism of high temperature oxidation resistance improvement of double-layer thermal barrier coatings (TBCs) by La. Ceram. Int. 2019, 45, 9126–9135. [Google Scholar] [CrossRef]
- Zhou, S.; Shen, S.; Fang, X.; Hou, Q.; Zhao, D. An accurate and rapid method to compare thermal insulation capacity of nine Gd-Yb-YSZ coatings. Ceram. Int. 2019, 45, 19910–19917. [Google Scholar] [CrossRef]
- Boissonnet, G.; Chalk, C.; Nicholls, J.; Bonnet, G.; Pedraza, F. Thermal insulation of CMAS (CalciumMagnesium-Alumino-Silicates)- attacked plasma-sprayed thermal barrier coatings. J. Eur. Ceram. Soc. Elsevier 2020, 40, 2042–2049. [Google Scholar] [CrossRef]
- Sasikumar, K.; Bharathikannan, R.; Raja, M.; Mohanbabu, B. Fabrication and characterization of rare earth (Ce. Gd, and Y) doped ZrO2 based metal-insulator-semiconductor (MIS) type Schottky barrier diodes. Superlattices Microstruct. 2020, 139, 106424. [Google Scholar] [CrossRef]
- Mekala, R.; Deepa, B.; Rajendran, V. Preparation. characterization and antibacterial property of rare earth (Dy and Ce) doping on ZrO2 nanoparticles prepared by co-precipitation method. Mater. Today Proc. 2018, 5, 8837–8843. [Google Scholar] [CrossRef]
- Deng, J.; Li, S.; Xiong, L.; Wang, J.; Yuan, S.; Chen, Y. Different thermal behavior of nanostructured CeO2-ZrO2 based oxides with varied Ce/Zr molar ratios. Mater. Chem. Phys. 2019, 236, 121767. [Google Scholar] [CrossRef]
- Madhusudhanaa, H.C.; Shobhadevic, S.N.; Nagabhushanad, B.M.; Hari Krishnad, R.V.; Murugendrappa, M.; Nagabhushanaf, H. Structural Characterization and Dielectric studies of Gd doped ZrO2 nano crystals Synthesized by Solution combustion method. Mater. Today Proc. 2018, 5, 21195–21204. [Google Scholar] [CrossRef]
- Xiao, D.Q.; He, G.J.; Lv, G.P.; Wang, H.; Liu, M.; Gao, J.; Jin, P.; Jiang, S.S.; Li, W.D.; Sun, Z.Q. Interfacial modulation and electrical properties improvement of solution-processed ZrO2 gate dielectrics upon Gd incorporation. J. Alloy. Compd. 2017, 699, 415–420. [Google Scholar] [CrossRef]
- Guo, L.; Li, M.; Ye, F. Phase stabilityandthermalconductivityof RE2O3 (RE¼La. Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics. Ceram. Int. 2016, 42, 7360–7365. [Google Scholar] [CrossRef]
- Song, X.; Xie, M.; Mub, R.; Zhou, F.; Jia, G.; An, S. Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2–Nb2O5–Y2O3 ceramics. Acta Mater. 2011, 59, 3895–3902. [Google Scholar] [CrossRef]
- Song, X.; Xie, M.; An, S.; Hao, X.; Mu, R. Structure and thermal properties of ZrO2–Ta2O5–Y2O3–Ln2O3 (Ln = Nd. Sm or Gd) ceramics for thermal barrier coatings. Scr. Mater. 2010, 62, 879–882. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Orlova, A.I.; Malanina, N.V.; Nokhrin, A.V.; Potanina, E.A.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Kalenova, M.Y.; et al. A study of fine-grained ceramics based on complex oxides ZrO2-Ln2O3 (Ln= Sm, Yb) obtained by Spark Plasma Sintering for inert matrix fuel. Ceram. Int. 2018, 44, 18595–18608. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Feng, J. Impact of ZrO2 alloying on thermo-mechanical properties of Gd3NbO7. Ceram. Int. 2020, 46, 6174–6181. [Google Scholar] [CrossRef]
- Chen, C.; Liang, T.; Guo, Y.; Chena, X.; Man, Q.; Zhang, X.; Zeng, J.; Ji, V. Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4+V2O5 molten salts at 1000 °C. Corros. Sci. 2019, 158, 108094. [Google Scholar] [CrossRef]
- Pitek, F.M.; Levi, C.G. Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system. Surf. Coat. Technol. 2007, 201, 6044–6050. [Google Scholar] [CrossRef]
- Fan, W.; Baia, Y.; Wang, Z.Z.; Che, J.W.; Wang, Y.; Tao, W.Z.; Wang, R.J.; Liang, G.Y. Effect of point defects on the thermal conductivity of Sc2O3-Y2O3 costabilized tetragonal ZrO2 ceramic materials. J. Eur. Ceram. Soc. 2019, 39, 2389–2396. [Google Scholar] [CrossRef]
- Sun, L.; Guon, H.; Peng, H.; Gong, S.; Xu, H. Influence of partial substitution of Sc2O3 with Gd2O3 on thephase stability andthermalconductivityofSc2O3-doped ZrO2. Ceram. Int. 2013, 39, 3447–3451. [Google Scholar] [CrossRef]
- Fabrichnaya, O.; Wang, C.; Zinkevich, M.; Levi, C.G.; Aldinger, F.J. Phase equilibria and thermodynamic properties of the ZrO2-GdO1.5-YO1.5 system. J. Phase Equilib. Diff. 2005, 26, 591–604. [Google Scholar] [CrossRef]
- Fabrichnaya, O.; Savinykh, G.; Zienert, T.; Schreiber, G.; Seifert, H.J. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: Experimental investigation and thermodynamic modelling. Int. J. Mater. Res. 2012, 103, 1469–1487. [Google Scholar] [CrossRef]
- Andrievskaya, E.R.; Samelyuk, A.V.; Lopato, L.M. Reaction of cerium oxide with zirconium and yttrium oxides at 1250 °C. Powder Metall. Met. Ceram. 2002, 41, 63–71. [Google Scholar] [CrossRef]
- Longo, V.; Podda, L. Relazioi tra le fasi allo stato solido nel sistema CeO2–ZrO2–Y2O3 tra 1700 e 1400 °C. Ceramica (Florence) 1984, 37, 18–20. [Google Scholar]
- Li, L.; Van der Biest, O.; Wang, P.L.; Vleugels, J.; Chen, W.W. Estimation of the phase diagram for the ZrO2-Y2O3-CeO2 system. J. Eur. Ceram. Soc. 2001, 21, 2903–2910. [Google Scholar] [CrossRef]
- Fabrichnaya, O.B.; Savinykh, G.; Schreiber, G.; Dopita, M.; Seifert, H.J. Experimental investigation and thermodynamic modelling in the ZrO2–La2O3–Y2O3 system. J. Alloys Compd. 2010, 493, 263–271. [Google Scholar] [CrossRef]
- Fabrichnaya, O.B.; Savinykh, G.; Schreiber, G.; Seifert, H.F. Phase relations in the ZrO2 –Nd2O3 –Y2O3 system: Experimental study and CALPHAD assessment. Int. J. Mater. Res. 2010, 101, 1354–1360. [Google Scholar] [CrossRef]
- Zhang, D.; Gong, S.; Huibin, X. Thermal cycling behaviors of thermal barrier coatings on intermetallic Ni3Al based superalloy. Surf. Coat. Technol. 2003, 168, 78–83. [Google Scholar] [CrossRef]
- Boissonnet, G.; Chalk, C.; Nicholls, J.R.; Bonnet, G.; Pedraza, F. Phase stability and thermal insulation of YSZ and erbia-yttria co-doped zirconia EB–PVD thermal barrier coating systems. Surf. Coat. Technol. 2020, 389, 125566. [Google Scholar] [CrossRef]
- Cao, X.; Vassen, R.; Jungen, W.; Schwartz, S.; Tietz, F.; Stöver, D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J. Am. Ceram. Soc. 2001, 84, 2086–2090. [Google Scholar] [CrossRef]
- Vassen, R.; Cao, X.Q.; Tietz, F.; Basu, D.; Stöver, D. Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc. 2000, 83, 2023–2028. [Google Scholar] [CrossRef]
- Mercer, C.; Williams, J.R.; Clarke, D.R.; Evans, A.G. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc. R. Soc. A 2007, 463, 1393–1408. [Google Scholar] [CrossRef]
- Guo, X.Y.; Li, L.; Park, H.M.; Knapp, J.; Jung, Y.G.; Zhang, J. Mechanical properties of layered La2Zr2O7 thermal barrier coatings. J. Therm. Spray Technol. 2018, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liao, K.; Yu, Y.; Tian, Z.; Cao, Y. Microstructure and thermal & mechanical properties of La2Zr2O7@YSZ composite ceramic. Ceram. Int. 2020, 46, 4737–4747. [Google Scholar]
- Karaoglanli, A.C.; Doleker, K.M.; Ozgurlu, Y. Interface failure behavior of yttria stabilized zirconia (YSZ), La2Zr2O7, Gd2Zr2O7, YSZ/La2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings (TBCs) in thermal cyclic exposure. Mater. Charact. 2020, 159, 110072. [Google Scholar] [CrossRef]
- Doleker, K.M.; Ozgurluk, Y.; Karaoglanl, A.C. Isothermal oxidation and thermal cyclic behaviors of YSZ and doublelayered YSZ/La2Zr2O7 thermal barrier coatings (TBCs). Surf. Coat. Technol. 2018, 351, 78–88. [Google Scholar] [CrossRef]
- Naga, S.M.; Awaad, M.; El-Maghraby, H.F.; Hassan, A.M.; Elhoriny, M.; Killinger, A.; Gadow, R. Effect of La2Zr2O7 coat on the hot corrosion of multi-layer thermal barrier coatings. Mater. Des. 2016, 102, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Fan, S.; You, Y.; Wang, L.; Yang, C. Optimized functionally graded La2Zr2O/8YSZ thermal barrier coatings. J. Alloy. Compd. 2015, 649, 1182–1190. [Google Scholar] [CrossRef]
- Ozgurluk, Y.; Doleker, K.M.; Karaoglanli, A.C. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl. Surf. Sci. 2018, 438, 96–113. [Google Scholar] [CrossRef]
- Amaya, C.; Aperador, W.; Caicedo, J.C.; Espinoza-Beltrán, F.J.; Muñoz-Saldaña, J.; Zambrano, G.; Prieto, P. Corrosion study of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) nanostructured Thermal Barrier Coatings (TBC) exposed to high temperature treatment. Corros. Sci. 2009, 51, 2994. [Google Scholar] [CrossRef]
- Rösemann, N.; Ortner, K.; Petersen, J.; Schadow, T.; Bäker, M.; Bräuer, G.; Rösler, J. Influence of bias voltage and oxygen flow rate on morphology and crystallographic properties of gas flow sputtered zirconia coatings. Surf. Coat. Technol. 2015, 276, 668. [Google Scholar]
- Rösemann, N.; Ortner, K.; Bäker, M.; Petersen, J.; Bräuer, G.; Rösler, J. Influence of the Oxygen Flow Rate on Gas Flow Sputtered Thermal Barrier Coatings. J. Ceram. Sci. Technol. 2018, 9, 29. [Google Scholar]
- Noor-A-Alam, M.; Choudhuri, A.R.; Ramana, C.V. Effect of composition on the growth and microstructure of hafnia–zirconia based coatings. Surf. Coat. Technol. 2011, 206, 1628. [Google Scholar] [CrossRef]
- Portinha, A.; Teixeira, V.; Carneiro, J.; Costa, M.F.; Barradas, N.P.; Sequeira, A.D. Stabilization of ZrO2 PVD coatings with Gd2O3. Surf. Coat. Technol. 2004, 107, 188–189. [Google Scholar] [CrossRef]
- Andritschky, M.; Teixeira, V.; Rebouta, L.; Buchkremer, H.P.; Stover, D. Adherence of combined physically vapor-deposited and plasma-sprayed ceramic coatings. Surf. Coat. Technol. 1995, 101, 76–77. [Google Scholar]
- Yao, J.; He, Y.; Wang, D.; Peng, H.; Guo, H.; Gong, S. Thermal barrier coatings with (Al2O3–Y2O3)/(Pt or Pt–Au) compositebond coat and 8YSZ top coat on Ni-based superalloy. Appl. Surf. Sci. 2013, 286, 298. [Google Scholar] [CrossRef]
- Budinovskiia, S.A.; Matveeva, P.V.; Smirnova, A.A.; Chubarov, D.A. Thermal-Barrier Coatings with an External Magnetron-Sputtered Ceramic Layer for High-Temperature Nickel Alloy Turbine Blades. Russ. Metall. (Met.) 2019, 6, 617–623. [Google Scholar] [CrossRef]
- Tabatabaeian, M.R.; Rahmanifard, R.; Jalili, Y.S. The study of phase stability and thermal shock resistance of a Scandia–Ceria stabilized zirconia as a new TBC material. Surf. Coat. Technol. 2019, 374, 752–762. [Google Scholar] [CrossRef]
- Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Piticescu, R.R.; Corban, M.; Grilli, M.L.; Balima, F.; Prakasam, M. Design of new coatings and sintered materials based on mixed rare earth oxides. J. Nucl. Res. Dev. 2019, 18, 18–23. [Google Scholar]
- Piticescu, R.R.; Malic, B.; Kosec, M.; Motoc, A.; Monty, C.; Soare, I.; Kosmac, T.; Daskobler, A. Synthesis and sintering behaviour of hydrothermally synthesized YTZP nanopowders for ion-conduction applications. J. Eur. Ceram. Soc. 2004, 24, 1941–1944. [Google Scholar] [CrossRef]
- Ionescu, G.; Manoliu, V.; Alexandrescu, E.; Stefan, A.; Mihailescu, A. The behavior of multilayer ceramic protecting at thermal shock. Incas Bull. 2013, 5, 25–32. [Google Scholar]
TBC Properties | ||
---|---|---|
Al2O3 (TGO) | NiCoCrAlY | 8YSZ |
Tm ~2323 K λ = 5.8 W m−1·K−1 (1400 K) α = 9.6 × 10-6 K−1 (1273 K) E = 30 GPa (293 K) υ = 0.26 | Tm ~1863 K λ = 320 W m−1·K−1 (293 K) α = 10.7 × 10-6 K−1 (293–1273 K) E = 40 GPa (293 K) υ = 0.22 | Tm ~2873 K λ~2.5 W m−1·K−1 (298 K) α = 10.7 × 10−6 K−1 (293–1273 K) E = 40 GPa (293 K) υ = 0.22 |
ZrO2 Properties | |||
---|---|---|---|
Melting point, °C | 2700 | Evaporation rate µm/h × 10−5 at 1650 °C | 670 |
Density, g/cm3 | 5.6 | at 1927 °C | 0.75 |
Vapor pressure, Pa × 10−6 at 1650 °C | 10.6 | at 2200 °C | 44 |
×10−5 at 1927 °C | 127 | Oxygen permeability g/cm−1 s−1 × 10−13 at 1000 °C | 120 |
×10−3 at 2200 °C | 78.7 | ×10−11 at 1400 °C | 60 |
Crystal structure below 1170 °C | Monoclinic | ×10−10 at 1800 °C | 30 |
1170–2370 °C | Tetragonal | Limit of stability with carbon, °C | 1600 |
2370–2706 °C | Cubic | Thermal expansion, ppm/°C | 7.5 |
Nr. | Material | Technique | Structural and Morphological Properties | Reference |
---|---|---|---|---|
1 | 8 wt.% rare earth (Ce, Gd and Y) doped ZrO2 films | sol-gel | monoclinic and tetragonal phases; doping with RE ions, the crystallite size is reduced (D = 6752 nm for ZrO2 undoped, D = 4640 nm for doped ZrO2). | [20] |
2 | Ce doped ZrO2, Dy doped ZrO2 | coprecipitation | tetragonal and monoclinic phases; doping with RE ions, the crystallite size is reduced (D = 12 nm for ZrO2 undoped, D = 9 nm for ZrO2/Dy, D = 6 nm ZrO2/Ce). | [21] |
3 | (Gd (1–9 mol%) doped ZrO2 | solution combustion | D = 25–35 nm | [23] |
4 | 1 mol% RE2O3 (RE = La, Nd, Gd, Yb) | by co-precipitation | tetragonal phase | [25] |
5 | partial substitution of Y2O3 with the equivalent Ln2O3 (Ln = Nd, Sm, Gd) in ZrO2-Nb2O5-Y2O3 ceramics | - | tetragonal phase | [25] |
6 | ZrO2-doped with (8.3% mol Ta2O5 + 8.3% molY2O3 by solid-state reaction.-1 mol.% Ln2O3 substituted 1 mol% Y2O3 | solid-state reaction | decreasing grain growth | [27] |
7 | ZrO2-x-Ln2O3 (where Ln = Sm, Yb) | colloidal chemical synthesis | no phase transformation occurs during heating | [28] |
8 | ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 | chemical precipitation | excellent stability of tetragonal phase (of the thermal cycle at 1300 °C for 50 h) | [13] |
9 | x mol% ZrO2-Gd3NbO7 dense ceramics (x = 0, 3, 6, 9, 12) | solid state reactions | D = 2–20 μm | [29] |
10 | xSc2O3−1.5Y2O3-ZrO2 (x = 4.5, 5.5, 6.5, in mol%) | chemical coprecipitation | increasing Sc2O3 content, phase stability also increases. | [30] |
11 | ZrO2-YO1.5-TaO2.5 | co-precipitation | tetragonal phase | [31] |
Material | T [°C] | Compounds Present in the Ternary Diagram | Reference |
---|---|---|---|
ZrO2–Y2O3–Gd2O3 | 1200 | F = fluorite; C = bixbyite; T = tetragonal ZrO2; P = pyrochlore Gd2Zr2O7; δ = Y4Zr3O12 | [34] |
1400 | F = fluorite; C = bixbyite; T = tetragonal ZrO2; P = pyrochlore Gd2Zr2O7; β = B-Gd2O3 | ||
1600 | F = fluorite; C = bixbyite; T = tetragonal ZrO2; β = B-Gd2O3 | ||
ZrO2–Y2O3–Sm2O3 | 1250 | F = cubic (fluorite structure) (Zr1–x(Y,Sm)x)O2–0.5x ss; T = tetragonal (Zr1–x(Y,Sm)x)O2–0.5x ss; Pyr = (Sm,Y)2Zr2O7ss (pyrochlore); B = monoclinic (Sm,Y)2O3 ss; C = cubic (Y,Sm)2O3 ss. | [35] |
1400 | |||
1600 | |||
ZrO2–Y2O3–CeO2 | 1250 | T = tetragonal; F = cubic fluorite; C = cubic; δ = Zr3(Y1-xCex)4O12. | [36] |
1400 | Tss = tetragonal solid solution; Fss = fluorite-type solid solution; Css = body-centered cubic solid solution. | [37] | |
1600 | Tss = tetragonal zirconia structure; Css = cubic fluorite structure; Yss = C-type yttria structure. | [38] | |
ZrO2–Y2O3–La2O3 | 1250 | A = hexagonal A-La2O3; B = monoclinic phase; C = cubic phase; F = fluorite phase; LaYP = La2Y2O6 pyrochlore phase; Pyr = La–Y–Zr phase. | [39] |
1400 | A = hexagonal A-La2O3; B = monoclinic phase; C = cubic phase; F = fluorite phase; LaYP = La2Y2O6 pyrochlore phase; Pyr = La–Y–Zr phase. | ||
1600 | A =hexagonal A-La2O3; B = monoclinic phase; C = cubic phase; F = fluorite phase; LaYP = La2Y2O6 pyrochlore phase; Pyr = La–Y–Zr phase. | ||
ZrO2–Y2O3–Nd2O3 | 1250 | A = RE hexagonal solid solution; B = RE monoclinic solid solution; C = RE cubic solid solution; solution; F = cubic fluorite solid solution; T = trigonal solid solution; Pyr = Nd2Zr2O7 pyrochlore. | [40] |
1400 | |||
1600 |
Coating Material | Deposition Technique | Coating Thickness | Target | Power | Process Pressure | Substrate Temperature | Bias Voltage | Reference |
---|---|---|---|---|---|---|---|---|
8YSZ | rf magnetron sputtering | ~2.5 µm | YSZ | 350 W | 0.7 Pa (Ar) | 300 °C | −20 V | [53] |
8 mol% and 4 mol% YSZ | gas flow sputtering | ~15–70 µm | ZrY alloy | 5 kW (DC) | 20–50 Pa (Ar + O2) | 500–800 °C | 0–−100 V (pulsed DC) | [54,55] and works cited therein |
YSHZ | sputtering | ~1 µm | YSHZ | 100 W | /(Ar) | 500 °C | / | [56] |
Gd2O3-stabilized ZrO2 and Gd2O3-costabilized YSZ | DC magnetron sputtering | ~1.2–3.8 µm | Zr doped with Gd and/or Y | Voltage 260–290 V | 0.6 Pa (Ar + O2) | 250 °C | −50 V (DC) | [57] |
Material Used and Number of Crucibles | Substrate Heating Temperature (°C) | Start Vacuum (Pa) | Working Vacuum (Pa) | Deposition Rate (Å/s) | Total Deposition Time (h) | Maximum Power (KW) |
---|---|---|---|---|---|---|
6 crucibles: 1xNiCrAlY 4 × ceramic pellets 1 × LZO, 1× GZO | 650 | 1.33 × 10−4 | 5.33 × 10−3 | 0.8−1.4 | 57 | 10 |
Sample | Chemical Analysis | |||||||
---|---|---|---|---|---|---|---|---|
La | Gd | Y | Yb | Sm | Nd | Zr | ||
ZrO2-RE1 | wt.% | 3.49 | 0.278 | 0.46 | 0.0032 | 0.409 | 2.33 | 52.19 |
MxZy8La | wt.% | 8 | - | 5.50 | - | <0.004 | - | 63.32 |
MxZy8Sm | wt.% | - | - | 5.77 | - | 9.28 | 60.46 | |
MxZy8Nd | wt.% | - | - | 5.70 | - | - | 8.09 | 61.50 |
MxZy8Gd | wt.% | - | 9.93 | 5.68 | - | - | - | 60.03 |
Sample | Major Phases | Formula | PDF File | Crystallization System |
---|---|---|---|---|
ZrO2-RE1 | Zirconium Yttrium Oxide | Solid solution | PDF 00-060-0505 | Tetragonal |
MxZy8La | Zirconium Yttrium Oxide type | Solid solution | PDF-01-077-2286 | Cubic |
Baddeleyite | ZrO2 | PDF-00-036-0420 | Monoclinic | |
MxZy8Sm | Zirconium Yttrium Oxide type | Solid solution | PDF 01-077-2286 | Cubic |
MxZy8Nd | Zirconium Yttrium Oxide type | Solid solution | PDF 01-077-2286 | Cubic |
MxZy8Gd | Zirconium Yttrium Oxide type | Solid solution | PDF 01-077-2286 | Cubic |
Baddeleyite | ZrO2 | PDF 00-036-0420 | Monoclinic |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoc, A.M.; Valsan, S.; Slobozeanu, A.E.; Corban, M.; Valerini, D.; Prakasam, M.; Botan, M.; Dragut, V.; Vasile, B.S.; Surdu, A.V.; et al. Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results. Metals 2020, 10, 746. https://doi.org/10.3390/met10060746
Motoc AM, Valsan S, Slobozeanu AE, Corban M, Valerini D, Prakasam M, Botan M, Dragut V, Vasile BS, Surdu AV, et al. Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results. Metals. 2020; 10(6):746. https://doi.org/10.3390/met10060746
Chicago/Turabian StyleMotoc, Adrian Mihail, Sorina Valsan, Anca Elena Slobozeanu, Mircea Corban, Daniele Valerini, Mythili Prakasam, Mihail Botan, Valentin Dragut, Bogdan St. Vasile, Adrian Vasile Surdu, and et al. 2020. "Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results" Metals 10, no. 6: 746. https://doi.org/10.3390/met10060746
APA StyleMotoc, A. M., Valsan, S., Slobozeanu, A. E., Corban, M., Valerini, D., Prakasam, M., Botan, M., Dragut, V., Vasile, B. S., Surdu, A. V., Trusca, R., Grilli, M. L., & Piticescu, R. R. (2020). Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results. Metals, 10(6), 746. https://doi.org/10.3390/met10060746