Effect of Surface Roughness on Hydrogen-Induced Blister Behavior in Pure Iron
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
4. Discussion
5. Conclusions
- (1)
- The grinded surface exhibits higher surface roughness with Rz of 4.679 μm compared to that of the polished surface with Rz of 0.567 μm. Residual compressive stress is −167.51 MPa for the grinded surface and −87.49 MPa for the polished surface.
- (2)
- Regardless of the grinded and polished surfaces, blister height, blister width and hydrogen blister area fraction increase with increasing hydrogen charging time. At the same hydrogen charging time, hydrogen blister height and width are of no difference between the grinded and polished surface. However, hydrogen blister area fraction and the number of blisters on polished surface are much larger than the grinded surface.
- (3)
- The grinded surface presents lower sensitivity to hydrogen-induced blisters in comparison with the polished surface, which is attributed to the suppression of hydrogen invasion caused by higher residual compressive stress and higher dislocation density in the grinded surface.
Author Contributions
Funding
Conflicts of Interest
References
- Ouaras, K.; Redolfi, M.; Vrel, D.; Quirós, C.; Lombardi, G.; Bonnin, X.; Hassouni, K. Tungsten Blister formation kinetic as a function of fluence, ion energy and grain orientation dependence under hydrogen plasma environment. J. Fusion Energy 2018, 37, 144–153. [Google Scholar] [CrossRef]
- Hoshihira, T.; Otsuka, T.; Tanabe, T. Visualization of hydrogen distribution around blisters by tritium radio-luminography. J. Nucl. Mater. 2009, 386, 776–779. [Google Scholar] [CrossRef]
- Quirós, C.; Mougenot, J.; Lombardi, G.; Redolfi, M.; Brinza, O.; Charles, Y.; Michau, A.; Hassouni, K. Blister formation and hydrogen retention in aluminium and beryllium: A modeling and experimental approach. Nucl Mater. Energ. 2017, 12, 1178–1183. [Google Scholar]
- Hoshihira, T.; Otsuka, T.; Wakabayashi, R.; Tanabe, T. Hydrogen behavior near surface regions in Mo and W studied by tritium tracer technique. J. Nucl. Mater. 2011, 417, 559–563. [Google Scholar] [CrossRef]
- Tiegel, M.C.; Martin, M.L.; Lehmberg, A.K.; Deutges, M.; Borchers, C.; Kirchheim, R. Crack and blister initiation and growth in purified iron due to hydrogen loading. Acta Mater. 2016, 115, 24–34. [Google Scholar] [CrossRef]
- Ren, X.; Chu, W.; Li, J.; Su, Y.; Qiao, L. The effects of inclusions and second phase particles on hydrogen-induced blistering in iron. Mater. Chem. Phys 2008, 107, 231–235. [Google Scholar] [CrossRef]
- Li, J.; Yin, H.; Yang, X.; Li, Q.; Zhang, P.; Xie, C.; Su, Y.; Qiao, L. Relationship between hydrogen diffusion and blistering nucleation and growth. J. Iron Steel Res. Int. 2016, 23, 1188–1194. [Google Scholar] [CrossRef]
- Dunne, D.P.; Hejazi, D.; Saleh, A.A.; Haq, A.J.; Calka, A.; Pereloma, E.V. Investigation of the effect of electrolytic hydrogen charging of X70 steel: I. The effect of microstructure on hydrogen-induced cold cracking and blistering. Int. J. Hydrogen Energy 2016, 41, 12411–12423. [Google Scholar] [CrossRef]
- Laureys, A.; Van den Eeckhout, E.; Petrov, R.; Verbeken, K. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging. Acta Mater. 2017, 127, 192–202. [Google Scholar] [CrossRef]
- Laureys, A.; Pinson, M.; Depover, T.; Petrov, R.; Verbeken, K. EBSD characterization of hydrogen induced blisters and internal cracks in TRIP-assisted steel. Mater. Charact. 2020, 159, 110029. [Google Scholar] [CrossRef]
- Singh, V.; Singh, R.; Arora, K.S.; Mahajan, D.K. Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels. Int. J. Hydrogen Energy 2019, 44, 22039–22049. [Google Scholar] [CrossRef]
- Mostafijur Rahman, K.M.; Mohtadi-Bonab, M.A.; Ouellet, R.; Szpunar, J.; Zhu, N. Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions. Int. J. Press. Vessels Pip. 2019, 173, 147–155. [Google Scholar] [CrossRef]
- Ayadi, S.; Charles, Y.; G aspérini, M.; Caron Lemaire, I.; Da Silva Botelho, T. Effect of loading mode on blistering in iron submitted to plastic prestrain before hydrogen cathodic charging. Int J Hydrogen Energy 2017, 42, 10555–10567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, Q.; Liu, J.; Huang, F.; Huang, Y.; Li, X. Understanding the effect of niobium on hydrogen-induced blistering in pipeline steel: A combined experimental and theoretical study. Corros. Sci. 2019, 159, 108142. [Google Scholar] [CrossRef]
- Griesche, A.; Dabah, E.; Kannengiesser, T.; Kardjilov, N.; Hilger, A.; Manke, I. Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta Mater. 2014, 78, 14–22. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Liu, Y.-L.; Jin, S.; Zhang, Y.; Luo, G.-N.; Lu, G.-H. Towards suppressing H blistering by investigating the physical origin of the H–He interaction in W. Nucl. Fusion 2010, 50, 115010. [Google Scholar] [CrossRef]
- Tao, X.; Lv, G.C.; Kou, J.; Xiong, X.; Volinsky, A.A.; Ku, C.-S.; Chen, K.; Su, Y.-J. Synchrotron X-ray Laue diffraction study of hydrogen-induced blisters on iron grain boundaries. Scr. Mater. 2019, 169, 82–86. [Google Scholar] [CrossRef]
- Miyamoto, M.; Nishijima, D.; Ueda, Y.; Doerner, R.; Kurishita, H.; Baldwin, M.; Morito, S.; Ono, K.; Hanna, J. Observations of suppressed retention and blistering for tungsten exposed to deuterium–helium mixture plasmas. Nucl. Fusion 2009, 49, 065035. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, H.; Lu, K.; Cao, W.; Sun, Y.; Fang, Y.; Xing, Y.; Du, Y.; Lu, M. Investigation of hydrogen concentration and hydrogen damage on API X80 steel surface under cathodic overprotection. Int. J. Hydrogen Energy 2017, 42, 29888–29896. [Google Scholar] [CrossRef]
- Escobar, D.P.; Miñambres, C.; Duprez, L.; Verbeken, K.; Verhaege, M. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros. Sci. 2011, 53, 3166–3176. [Google Scholar] [CrossRef]
- Zapffe, C.; Sims, C. Hydrogen embrittlement, internal stress and defects in steel. Trans. AIME 1941, 145, 225–271. [Google Scholar]
- Ren, X.; Zhou, Q.; Shan, G.; Chu, W.; Li, J.; Su, Y.; Qiao, L. A nucleation mechanism of hydrogen blister in metals and alloys. Metall. Mater. Trans. A 2008, 39, 87–97. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, Q.; Chu, W.; Li, J.; Su, Y.; Qiao, L. The mechanism of nucleation of hydrogen blister in metals. Chin. Sci. Bull. 2007, 52, 2000–2005. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z. X-ray Diffraction of Polycrystalline Materials-experimental Principle Method and Application; Metallurgical Industry Press: Beijing, China, 2012; p. 174. [Google Scholar]
- Warrier, M.; Rai, A.; Schneider, R. A time dependent model to study the effect of surface roughness on reactive–diffusive transport in porous media. J. Nucl. Mater. 2009, 390, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Ledentu, V.; Sautet, P.; Eichler, A.; Hafner, J. Hydrogen adsorption on palladium: A comparative theoretical study of different surfaces. Surf. Sci. 1998, 411, 123–136. [Google Scholar] [CrossRef]
- Escobar, D.P.; Verbeken, K.; Duprez, L.; Verhaege, M. On the Methodology of Thermal Desorption Spectroscopy to Evaluate Hydrogen Embrittlement. Mater. Sci. Forum 2011, 706, 2354–2359. [Google Scholar]
- Seo, M.J.; Shim, H.-S.; Kim, K.M.; Hong, S.-I.; Hur, D.H. Influence of surface roughness on the corrosion behavior of Alloy 690TT in PWR primary water. Nucl. Eng. Des. 2014, 280, 62–68. [Google Scholar] [CrossRef]
- Song, G.; Xu, Z. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electron. Acta 2010, 55, 4148–4161. [Google Scholar] [CrossRef]
- Hudson, R.; Riedy, K.; Stragand, G. Influence of specimen geometry and surface roughness on hydrogen behavior in steel. Corrosion 1962, 18, 79–84. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Y.; Wang, Q.; Zhang, K.; Wu, Y. The relationship of surface roughness and work function of pure silver by numerical modeling. Int. J. Electrochem. Sci. 2012, 7, 5204–5216. [Google Scholar]
- Li, X.; Zhang, J.; Wang, Y.; Ma, M.; Shen, S.; Song, X. The dual role of shot peening in hydrogen-assisted cracking of PSB1080 high strength steel. Mater. Des. 2016, 110, 602–615. [Google Scholar] [CrossRef]
- Takakuwa, O.; Soyama, H. Preventing Hydrogen Diffusion in Stainless Steel by Cavitating Jet in Air. In Proceedings of the 23rd International Conference on Water Jetting 2016, Seattle, DC, USA, 15–18 November 2016; BHR Group Limited: Wharley End, UK, 2016; pp. 215–221. [Google Scholar]
- Takakuwa, O.; Soyama, H. Suppression of hydrogen-assisted fatigue crack growth in austenitic stainless steel by cavitation peening. Int. J. Hydrogen Energy 2012, 37, 5268–5276. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, C.; Zhang, Y. Influence of Alloying Elements and Effect of Stress on Anisotropic Hydrogen Diffusion in Zr-Based Alloys Predicted by Accelerated Kinetic Monte Carlo Simulations. In Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Portland, OR, USA, 13–17 August 2017; pp. 1815–1826. [Google Scholar]
- Toribio, J.; Kharin, V. Role of crack tip mechanics in stress corrosion cracking of high-strength steels. Int. J. Fract. 2004, 126, L57–L63. [Google Scholar] [CrossRef]
- Wang, L.F.; Shu, X.; Lu, G.-H.; Gao, F. Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten. J. Phys. Condens. Matter 2017, 29, 435401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takakuwa, O.; Nishikawa, M.; Soyama, H. Numerical simulation of the effects of residual stress on the concentration of hydrogen around a crack tip. Surf. Coat. Technol. 2012, 206, 2892–2898. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Y.; Huang, W.; Zhang, J.; Wu, X. Effect of Surface Roughness on Hydrogen-Induced Blister Behavior in Pure Iron. Metals 2020, 10, 745. https://doi.org/10.3390/met10060745
Li X, Wang Y, Huang W, Zhang J, Wu X. Effect of Surface Roughness on Hydrogen-Induced Blister Behavior in Pure Iron. Metals. 2020; 10(6):745. https://doi.org/10.3390/met10060745
Chicago/Turabian StyleLi, Xinfeng, Yao Wang, Weihong Huang, Jin Zhang, and Xubin Wu. 2020. "Effect of Surface Roughness on Hydrogen-Induced Blister Behavior in Pure Iron" Metals 10, no. 6: 745. https://doi.org/10.3390/met10060745
APA StyleLi, X., Wang, Y., Huang, W., Zhang, J., & Wu, X. (2020). Effect of Surface Roughness on Hydrogen-Induced Blister Behavior in Pure Iron. Metals, 10(6), 745. https://doi.org/10.3390/met10060745