Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution
Abstract
:1. Introduction
1.1. General Introduction
1.2. Theoretical Background of Electrodialysis
2. Materials and Methods
2.1. Materials and Equipment
2.2. Methods
3. Results
3.1. Effects of Electrode Solution Concentration
3.2. Concentration of Lithium by MSC Electrodialysis
3.3. Sodium Sulfate Removal Process
3.4. Concentration of Lithium by MSC Electrodialysis after Sodium Sulfate Removal Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, H.W.; Lee, J.H.; Jung, S.C.; Myung, S.T.; Kang, W.S.; Kim, S.J. Fabrication of Si/SiOx Anode Materials by a Solution Reaction-Based Method for Lithium Ion Batteries. Korean J. Met. Mater. 2016, 54, 780–786. [Google Scholar]
- Yang, Y.M.; Loka, C.; Kim, D.P.; Joo, S.Y.; Moon, S.W.; Choi, Y.S.; Park, J.H.; Lee, K.S. Si-FeSi2/C Nanocomposite Anode Materials Produced by Two-Stage High-Energy Mechanical Milling. Met. Mater. Int. 2017, 23, 610–617. [Google Scholar] [CrossRef]
- KIPOST (Korea Industry Post). Available online: https://www.kipost.net/news/articleView.html?idxno=203140 (accessed on 8 March 2020).
- Park, J.G. Effect of Adding Carbonaceous Materials on Cathode Materials for Lithium Secondary Batteries. Master’s Thesis, Kumoh National Institute of Technology, Gumi, Korea, 2007. [Google Scholar]
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; Van den Bossche, P.; Boon-brett, L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Hoshino, T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane. Fus. Eng. Des. 2013, 88, 2956–2959. [Google Scholar] [CrossRef]
- Hoshino, T. Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination 2013, 317, 11–16. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Y.; Ji, Z.Y.; Chen, Q.B.; Liu, J.; Zhao, Y.Y.; Li, F.; Liu, Z.Y.; Yuan, J.S. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J. Clean. Prod. 2018, 193, 338–350. [Google Scholar] [CrossRef]
- Umeno, A.; Miyai, Y.; Takagi, N.; Chitraker, R.; Sakane, K.; Ooi, K. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Ind. Eng. Chem. Res. 2002, 41, 4281–4287. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeong, S.G.; Koo, S.J.; Kim, S.Y.; Ju, C.S. Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO. Korean Chem. Eng. Res. 2013, 51, 53–57. [Google Scholar] [CrossRef]
- Ryu, T.G.; Shin, J.H.; Ghoreishian, S.M.; Chung, K.S.; Huh, Y.S. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite. Hydrometallurgy 2019, 184, 22–28. [Google Scholar] [CrossRef]
- Lee, J.E. A Study of Lithium Concentration from Lithium-Containing Waste Solution by Electrodialysis. Master’s Thesis, Daejin University, Pocheon, Korea, 2019. [Google Scholar]
- Ahn, J.W.; Ahn, H.J.; Son, S.H.; Lee, K.W. Solvent Extraction of Ni and Li from Sulfate Leach Liquor of the Cathode Active Materials of Spent Li-ion Batteries by PC88A. J. Korean Inst. Resour. Recycl. 2012, 21, 58–64. [Google Scholar] [CrossRef]
- Ahn, H.J.; Ahn, J.W.; Lee, K.W.; Son, H.T. Recovery of Li from the Lithium Containing Waste Solution by D2EHPA. J. Korean Inst. Resour. Recycl. 2014, 23, 21–27. [Google Scholar]
- Kim, S.H. Non-Discharge System for Nickel Plating Rinse Waters by Electrodialysis. Ph.D. Thesis, Dankook University, Yongin, Korea, 2000. [Google Scholar]
- Zhou, Y.; Yan, H.; Wang, X.; Wu, L.; Wang, Y.; Xu, T. Electrodialytic concentrating lithium salt from primary resource. Desalination 2018, 425, 30–36. [Google Scholar] [CrossRef]
- Gmar, S.; Chagnes, A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 2019, 189, 1–12. [Google Scholar] [CrossRef]
- Lee, J.E.; So, H.I.; Cho, Y.C.; Jang, I.H.; Ahn, J.W.; Lee, J.H. A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis. Korean J. Met. Mater. 2019, 57, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Hasseine, A.; Menial, A.-H.; Korichi, M. Salting-out effect of single salts NaCl and KCl on the LLE of the systems (water + toluene + acetone), (water + cyclohexane + 2-propanol) and (water + xylene + methanol). Desalination 2009, 242, 264–276. [Google Scholar] [CrossRef]
- Wang, C.; Lei, Y.D.; Wania, F. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds. Environ. Sci. Technol. 2016, 50, 12742–12749. [Google Scholar] [CrossRef] [Green Version]
Element | Li | Na | SO4 |
---|---|---|---|
Concentration (g/L) | 3.3 | 60.0 | 148.0 |
CJT-055 | ||
---|---|---|
Chamber | Dilute chamber | 2.0 L (PVC) |
Electrode chamber | 2.0 L (PVC) | |
Concentrate chamber | 2.0 L (PVC) | |
Effective membrane area | 55 cm2 | |
Power supply (Rectifier) | DC, 30 V, 5 A | |
Primary power source | 1 Ø, 220 V, 50 Hz/60 Hz | |
Cathode/Anode | Pt coated Ti (Pt/Ti) |
NEOSEPTA | CEM (Cation Exchange Membrane) | AEM (Anion Exchange Membrane) |
---|---|---|
Type | Strong acid (Na type) | Strong base (Cl type) |
Electric resistance * | 1.8 (Ω·cm2) | 2.6 (Ω·cm2) |
Thickness | 0.16 (mm) | 0.15 (mm) |
Characteristic | high mechanical strength | |
Burst strength** | ≥0.35 (MPa) | |
Temperature | ≤40 (°C) | |
pH | 0–14 |
Concentration of Electrode Solution | Concentration (g/L) | Process Lead Time (min) | ||
---|---|---|---|---|
Li | Na | SO4 | ||
Initial solution | 3.30 | 60.00 | 148.20 | - |
0.1 M Na2SO4 | 3.38 | 57.86 | 167.65 | 205 |
0.2 M Na2SO4 | 3.38 | 53.66 | 158.89 | 165 |
0.3 M Na2SO4 | 3.69 | 59.32 | 174.99 | 135 |
0.5 M Na2SO4 | 3.68 | 56.99 | 169.99 | 135 |
0.7 M Na2SO4 | 4.53 | 66.45 | 201.52 | 130 |
1.0 M Na2SO4 | 4.19 | 64.95 | 193.67 | 120 |
Stage | Concentration (g/L) | Concentration (%) Compared to Previous Stage Sol. | Concentration (%) Compared to Initial Sol. | Process Lead Time (min) | ||
---|---|---|---|---|---|---|
Li | Na | SO4 | ||||
Initial sol. | 3.30 | 60.00 | 148.20 | - | - | - |
1st | 4.92 | 42.05 | 147.88 | 149.09% | 149.09% | 210 |
2nd | 6.41 | 58.30 | 213.87 | 130.28% | 194.24% | 270 |
3rd | 6.95 | 63.58 | 224.84 | 108.42% | 210.61% | 320 |
Stage | Volume Change of | Water Migration (%) | |
---|---|---|---|
Concentrated Sol. | Diluted Sol. | ||
1st | 300 mL → 670 mL | 900 mL → 530 mL | 41.11% |
2nd | 300 mL → 870 mL | 900 mL → 330 mL | 63.33% |
3rd | 300 mL → 1050 mL | 900 mL → 150 mL | 83.33% |
Stage | Concentration (g/L) | Concentration (%) Compared to Previous Stage Sol. | Concentration (%) Compared to Initial Sol. | Process Lead Time (min) | ||
---|---|---|---|---|---|---|
Li | Na | SO4 | ||||
Initial sol. | 2.65 | 9.98 | 70.67 | - | - | - |
1st | 5.43 | 20.67 | 142.54 | 204.91% | 204.91% | 150 |
2nd | 8.09 | 30.09 | 208.21 | 148.99% | 305.28% | 210 |
3rd | 9.08 | 36.92 | 260.78 | 112.24% | 342.64% | 260 |
4th | 10.02 | 41.61 | 284.66 | 110.35% | 378.11% | 310 |
Stage | Volume Change of | Water Migration (%) | |
---|---|---|---|
Concentrated Sol. | Diluted Sol. | ||
1st | 300 mL → 530 mL | 900 mL → 670 mL | 25.56% |
2nd | 300 mL → 810 mL | 900 mL → 390 mL | 56.67% |
3rd | 300 mL → 980 mL | 900 mL → 220 mL | 75.56% |
4th | 300 mL → 1020 mL | 900 mL → 180 mL | 80.00% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Kim, K.; Ahn, J.; Lee, J. Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution. Metals 2020, 10, 851. https://doi.org/10.3390/met10070851
Cho Y, Kim K, Ahn J, Lee J. Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution. Metals. 2020; 10(7):851. https://doi.org/10.3390/met10070851
Chicago/Turabian StyleCho, Yeonchul, Kihun Kim, Jaewoo Ahn, and Jaeheon Lee. 2020. "Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution" Metals 10, no. 7: 851. https://doi.org/10.3390/met10070851
APA StyleCho, Y., Kim, K., Ahn, J., & Lee, J. (2020). Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution. Metals, 10(7), 851. https://doi.org/10.3390/met10070851