Study on the Relationship between Root Metal Flow Behavior and Root Flaw Formation of a 2024 Aluminum Alloy Joint in Friction Stir Welding by a Multiphysics Field Model
Abstract
:1. Introduction
2. Models
2.1. Geometry and Material Model
2.2. Heat Generation Model
2.3. Material Flow Model
2.3.1. Flow Rule
2.3.2. Constitutive Law
2.4. Boundary Conditions
2.4.1. Thermal Boundary Condition
2.4.2. Mechanical Boundary Condition
2.5. FEM Computational Mesh
2.6. Model Validation
3. Results and Discussions
3.1. Analysis of Fluidity at the Bottom of the Pin
3.1.1. Velocity Distribution
3.1.2. Driving Force Distribution
3.2. Effect of Pin Length on the Formation of Root Flaw
3.2.1. Effect of Pin Length on the Material Flow
3.2.2. Effect of Pin Length on the Heat Input
3.2.3. Effect of Pin Length on Stress Field
4. Conclusions
- (1)
- The material at the root of the FSW welding seam can be divided into two different zones according to flow behavior. The material near the bottom surface of the pin is zone Ⅰ, where material from AS and RS flow in opposite directions and mix on the RS side near the weld center. The material near the bottom surface of the workpiece is zone Ⅱ, where the material flows in the same direction near the weld center.
- (2)
- Owing to the low pressure and shear stress at the weld center, the fluidity of the material is low in the central area of zones Ⅰ and Ⅱ. The “S line” defect will appear at the RS side of zone Ⅰ when the material is not fully mixed owing to low fluidity. Furthermore, the non-penetration defect will appear at the center of zone Ⅱ when the material in zone Ⅱ cannot flow through the weld center.
- (3)
- With the increase of the pin length, the material flow behavior changes significantly on the margin of the pin of the RS side, and the shape of the “s line” defect also changes to the “right-tilting line” shape. If the pin length further increases, the tilting angle of the “right-tilting line” reduces, and the sizes of the “s line” defect and non-penetration decrease. The “s line” defect and non-penetration defect are finally eliminated when the pin length increases to a certain extend.
- (4)
- In this paper, the optimal pin length is 5.95 mm under a 6 mm butt FSW welded joint of aluminum alloy, which is determined from two aspects. On the one hand, if the pin length is shorter than 5.95 mm, the thickness of zone Ⅱ is not negligible, which will result in the insufficient fluidity of the material near the bottom surface of workpiece so that non-penetration defect is prone to occur. On the other hand, if the pin length is longer than 5.95 mm, the temperature at the root of the weld will increase to a relatively high level, which will coarsen the recrystallization tissue and degrade the mechanical properties of the FSW joint or even make an intense wear of stirring pin, reducing the stability of FSW process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, W.M.; Nicholas, E.D.; Needham, J.C. Friction Stir Butt Welding: Great. Britain Patent Application. No. 9125978.8, 8 December 1991. [Google Scholar]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R-Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Luo, J.; Li, F.; Chen, W. Experimental researches on resistance heat aided friction stir welding of Mg alloy. Q. J. Jpn. Weld. Soc. 2013, 31, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Nakata, K.; Wu, A.; Liao, J.; Zhou, L. Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Mater. Des. 2014, 57, 269–278. [Google Scholar] [CrossRef]
- Salih, O.S.; Ou, H.; Sun, W.; Mccartney, D.G. A review of friction stir welding of aluminium matrix composites. Mater. Des. 2015, 86, 61–71. [Google Scholar] [CrossRef]
- Jia, Y.; Lin, S.C.; Liu, J.Z.; Qin, Y.G.; Wang, K.H. The influence of pre- and post-heat treatment on mechanical properties and microstructures in friction stir welding of dissimilar age-hardenable aluminum alloys. Metals 2019, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.P.; Duarte, J.F.; Inácio, P.; Schell, N.; Miranda, R.M.; Santos, T.G. Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater. Des. 2017, 113, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Huang, Y.X. Microstructure and mechanical properties of Al/Steel friction stir lap weld. Metals 2017, 7, 542. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yang, X.; Luan, G. Effect of kissing bond on fatigue behavior of friction stir welds on Al 5083 alloy. J. Mater. Sci. 2006, 41, 2771–2777. [Google Scholar] [CrossRef]
- Sato, Y.S.; Takauchi, H.; Park, S.H.C.; Kokawa, H. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005, 405, 333–338. [Google Scholar] [CrossRef]
- Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Shihab, S.K. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J. Alloys. Compd. 2015, 648, 360–367. [Google Scholar] [CrossRef]
- Le Jolu, T.; Morgeneyer, T.F.; Denquin, A.; Sennour, M.; Laurent, A.; Besson, J.; Gourgues, L. Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014, 45A, 5531–5544. [Google Scholar] [CrossRef]
- Le Jolu, T.; Morgeneyer, T.F.; Denquin, A.; Gourgues, L. Fatigue lifetime and tearing resistance of AA2198 Al-Cu-Li alloy friction stir welds: Effect of defects. Int. J. Fatigue 2015, 70, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Le Jolu, T.; Morgeneyer, T.F.; Gourgues, L. Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy. Sci. Technol. Weld. Join. 2010, 15, 694–698. [Google Scholar] [CrossRef]
- Zhou, C.Z.; Yang, X.Q.; Luan, G.H. Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 418, 155–160. [Google Scholar] [CrossRef]
- Kadlec, M.; Růžek, R.; Nováková, L. Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect. Int. J. Fatigue 2015, 74, 7–19. [Google Scholar] [CrossRef]
- Sato, Y.S.; Yamashita, F.; Sugiura, Y.; Park, S.H.C.; Kokawa, H. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy. Scr. Mater. 2004, 50, 365–369. [Google Scholar] [CrossRef]
- Okamura, H.; Aota, K.; Sakamoto, M.; Ezumi, M.; Ikeuchi, K. Behavior of oxides during friction stir welding of aluminium alloy and their effect on its mechanical properties. Weld. Int. 2002, 16, 266–275. [Google Scholar] [CrossRef]
- Chen, G.; Li, H.; Shi, Q. On the material bonding behaviors in friction stir welding. In Friction Stir Welding and Processing; X (The Minerals, Metals & Materials Series); Springer: Cham, Switzerland, 2019; pp. 99–108. Available online: https://link.springer.com/chapter/10.1007/978-3-030-05752-7_10#citeas (accessed on 12 February 2019).
- Luo, J.; Li, S.X.; Chen, W.; Xiang, J.F. Wang Hong. Simulation of aluminum alloy flowing in friction stir welding with a multiphysics field model. Int. J. Adv. Manuf. Technol. 2015, 81, 349–360. [Google Scholar] [CrossRef]
- Al-Moussawi, M.; Smith, A.J. Defects in Friction Stir Welding of Steel. Metallogr. Microstruct. Anal. 2018, 7, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Yang, X.; Cui, L.; Zhou, G. Influences of joint geometry on defects and mechanical properties of friction stir welded AA6061-T4 T-joints. Mater. Des. 2014, 53, 112–123. [Google Scholar] [CrossRef]
- Zhou, N.; Song, D.; Qi, W.; Li, X.; Zou, J.; Attallah, M.M. Influence of the kissing bond on the mechanical properties and fracture behavior of AA5083-H112 friction stir welds. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2018, 719, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.G.; Miranda, R.M.; Vilaça, P. Friction Stir Welding assisted by electrical Joule effect. J. Mater. Process. Technol. 2014, 214, 2127–2133. [Google Scholar] [CrossRef]
- Luo, J.; Chen, W.; Fu, G. Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys. J. Mater. Process. Technol. 2014, 214, 3002–3012. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.J.; Wang, J.X. New technological methods and designs of stir head in resistance friction stir welding. Sci. Technol. Weld. Join. 2009, 14, 650–654. [Google Scholar] [CrossRef]
- Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Sci. Technol. Weld. Join. 2019, 24, 277–304. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, W.Y.; Shen, J.; Wen, Q.; Dos Santos, J.F. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol. 2018, 34, 135–139. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Wang, H.; Du, S.; Sekulic, D.P. Stationary shoulder supporting and tilting pin penetrating friction stir welding. J. Mater. Process. Technol. 2018, 255, 596–604. [Google Scholar] [CrossRef]
- Kumar, S. Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch. Civ. Mech. Eng. 2016, 16, 473–484. [Google Scholar] [CrossRef]
- Tarasov, S.Y.; Rubtsov, V.Y.; Kolubaev, E.A.; Ivanov, A.N.; Fortuna, S.V.; Eliseev, A.A. Ultrasonic-Assisted Friction Stir Welding on V95AT1 (7075) Aluminum Alloy. AIP Conf. Proc. 2015, 1683, 020231. [Google Scholar]
- Salari, E.; Jahazi, M.; Khodabandeh, A.; Ghasemi-Nanesa, H. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater. Des. 2014, 58, 381–389. [Google Scholar] [CrossRef]
- Do Vale, N.L.; Torres, E.A.; Santos, T.F.D.A.; Urtiga Filho, S.L.; Dos Santos, J.F. Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 467–481. [Google Scholar] [CrossRef]
- Mandache, C.; Levesque, D.; Dubourg, L.; Gougeon, P. Non-destructive detection of lack of penetration defects in friction stir welds. Sci. Technol. Weld. Join. 2012, 17, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Riahi, M.; Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int. J. Adv. Manuf. Technol. 2011, 55, 143–152. [Google Scholar] [CrossRef]
- Ren, J.G.; Wang, L.; Xu, D.K.; Xie, L.Y.; Zhang, Z.C. Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 228–237. [Google Scholar] [CrossRef]
- Zeng, X.H.; Xue, P.; Wang, D.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy. Met. Mater. Trans. A 2018, 49, 2673–2683. [Google Scholar] [CrossRef]
- Hernández, C.A.; Ferrer, V.H.; Mancilla, J.E.; Mart’ınez, C. Three-dimensional numerical modeling of the friction stir welding of dissimilar steels. Int. J. Adv. Manuf. Technol. 2017, 93, 1–15. [Google Scholar] [CrossRef]
Chemical Component | Si | Fe | Cu | Mn | Mg | Ni | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Content/wt % | 0.5 | 0.5 | 3.8 | 0.3 | 1.3 | 0.1 | 0.3 | 0.09 | Bal |
Parameter | Value |
---|---|
A | 2.29 × 1011 s−1 |
n | 5.46 |
Q | 178.0 kJ/mol |
47.7 MPa | |
R | 8.314 J/mol·K |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Wang, J.; Lin, H.; Yuan, L.; Gao, J.; Geng, H. Study on the Relationship between Root Metal Flow Behavior and Root Flaw Formation of a 2024 Aluminum Alloy Joint in Friction Stir Welding by a Multiphysics Field Model. Metals 2020, 10, 913. https://doi.org/10.3390/met10070913
Luo J, Wang J, Lin H, Yuan L, Gao J, Geng H. Study on the Relationship between Root Metal Flow Behavior and Root Flaw Formation of a 2024 Aluminum Alloy Joint in Friction Stir Welding by a Multiphysics Field Model. Metals. 2020; 10(7):913. https://doi.org/10.3390/met10070913
Chicago/Turabian StyleLuo, Jian, Jiafa Wang, Hongxin Lin, Lei Yuan, Jianjun Gao, and Haibin Geng. 2020. "Study on the Relationship between Root Metal Flow Behavior and Root Flaw Formation of a 2024 Aluminum Alloy Joint in Friction Stir Welding by a Multiphysics Field Model" Metals 10, no. 7: 913. https://doi.org/10.3390/met10070913
APA StyleLuo, J., Wang, J., Lin, H., Yuan, L., Gao, J., & Geng, H. (2020). Study on the Relationship between Root Metal Flow Behavior and Root Flaw Formation of a 2024 Aluminum Alloy Joint in Friction Stir Welding by a Multiphysics Field Model. Metals, 10(7), 913. https://doi.org/10.3390/met10070913