Oxidation and Corrosion Resistance of NiCr-Re and NiCr-Re-Al2O3 Materials Fabricated by Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Thermal Oxidation Tests
2.3. Electrochemical Corrosion Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghosh, D.; Mitra, S.K. High temperature corrosion problem of boiler components in presence of sulfur and alkali based fuels. High Temp. Mater. Proc. 2011, 30, 81–85. [Google Scholar] [CrossRef]
- Azamata, O.D.; Jibatswen, T.Y.; Michael, O.C. Effect of chlorine and sulphur on stainless steel (AISI 310) due to high temperature corrosion. Am. J. Eng. Res. 2016, 5, 266–270. [Google Scholar]
- Nagarajan, R.; Ambedkar, B.; Gowrisankar, S.; Somasundaram, S. Development of predictive model for fly-ash erosion phenomena in coal-burning boilers. Wear 2009, 267, 122–128. [Google Scholar] [CrossRef]
- Morks, M.F.; Berndt, C.C. Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system. Appl. Surf. Sci. 2010, 256, 4322–4327. [Google Scholar] [CrossRef]
- Oksa, M.; Metsajoki, J. Optimizing NiCr and FeCr HVOF coating structures for high-temperature corrosion protection applications. J. Therm. Spray Technol. 2015, 24, 436–453. [Google Scholar] [CrossRef]
- Lee, B.J.; Shin, P.K. Fabrication and characterization of Ni-Cr alloy thin films for application to precision thin film resistors. J. Electr. Eng. Technol. 2007, 2, 525–531. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, G.G.; Stevenson, J.W. Evaluation of Ni–Cr-base alloys for SOFC interconnect applications. J. Power Sources 2006, 160, 1104–1110. [Google Scholar] [CrossRef]
- Hamatani, H.; Shimoda, N.; Kitaguchi, S. Effect of the composition profile and density of LPPS sprayed functionally graded coating on the thermal shock resistance. Sci. Technol. Adv. Mat. 2003, 4, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, M.A.; Vuoristo, P.M.J.; Mantyla, T.A. High-temperature corrosion of coatings and boiler chlorine-containing atmosphere. Surf. Coat. Technol. 2002, 161, 275–285. [Google Scholar] [CrossRef]
- Matthews, S.; James, B.; Hyland, M. High-temperature erosion of Cr3C2-NiCr thermal spray coatings—The role of phase microstructure. Surf. Coat. Technol. 2009, 203, 1144–1153. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. 1050 °C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating. Surf. Coat. Technol. 2002, 161, 302–305. [Google Scholar] [CrossRef]
- Omoniyi, F.; Olubambi, P.; Sadiku, E. High-temperature oxidation resistance of Ni22Cr11Al bond coat produced by spark plasma sintering as thermal barrier coatings. J. Mater. Sci. Eng. 2016, 5, 1000236. [Google Scholar]
- Chmielewski, T.; Siwek, P.; Chmielewski, M.; Piątkowska, A.; Grabias, A.; Golański, D. Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases. Metals 2018, 8, 1059. [Google Scholar] [CrossRef] [Green Version]
- Sartowska, B.; Piekoszewski, J.; Waliś, L.; Senatorski, J.; Stanisławski, J.; Ratajczak, R.; Nowicki, L.; Kopcewicz, M.; Prokert, F.; Barlak, M. Structural and tribological properties of carbon steels modified by plasma pulses containing inert and active ions. Surf. Coat. Technol. 2007, 201, 8295–8298. [Google Scholar] [CrossRef]
- Plasma System. Available online: https://www.plasmasystem.pl/en/shells/highresist (accessed on 24 July 2020).
- Huang, L.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Effect of rhenium addition on isothermal oxidation behavior of single-crystal Ni-based superalloy. Surf. Coat. Technol. 2006, 200, 6863–6870. [Google Scholar] [CrossRef]
- Wei, W.; Geng, S.; Xie, D.; Wang, F. High temperature oxidation and corrosion behaviours of Ni-Fe-Cr alloys as inert anode for aluminum electrolysis. Corros. Sci. 2019, 157, 382–391. [Google Scholar] [CrossRef]
- Jiang, C.; Xie, Y.; Kong, C.; Zhang, J.; Young, D.J. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650 °C. Corros. Sci. 2020, 174, 108801. [Google Scholar] [CrossRef]
- Xing, X.; Li, Z.X.; Li, M.; Zhou, C. Comparison of the corrosion resistance of Ni2Al3 coating with and without Ni-Re interlayer in dry and wet CO2 gas. Corros. Sci. 2019, 159, 108121. [Google Scholar]
- Ai, H.; Yea, X.X.; Jiang, L.; Lenga, B.; Shen, M.; Li, Z.; Jia, Y.; Wang, J.Q.; Zhou, X.; Xie, Y.; et al. On the possibility of severe corrosion of a Ni-W-Cr alloy influoride moltensalts at high temperature. Corros. Sci. 2019, 149, 218–225. [Google Scholar] [CrossRef]
- Chmielewski, M.; Pietrzak, K.; Basista, M.; Weglewski, W. Rhenium doped chromium–alumina composites for high-temperature applications. Int. J. Refract. Met. Hard Mater. 2016, 54, 196–202. [Google Scholar] [CrossRef]
- Petrovich, V.; Haurylau, M.; Volchek, S. Rhenium deposition on silicon surface at the room temperature for application in microsystems. Sens. Actuator 2002, 99, 45–48. [Google Scholar] [CrossRef]
- Kojima, R.; Enomoto, H.; Muhler, M.; Aika, K. Cesium-promoted rhenium catalysts supported on alumina for ammonia synthesis. Appl. Catal. A Gen. 2003, 246, 311–322. [Google Scholar] [CrossRef]
- Roger, J.; Audubert, F.; Petitcorps, Y.L. Thermal reactions of SiC films with Mo, Re and Mo-Re alloys. J. Alloy Compd. 2009, 475, 635–642. [Google Scholar] [CrossRef]
- Kindrachuk, V.; Wanderka, N.; Banhart, J.; Mukherji, D.; Del Genovese, D.; Rösler, J. Effect of rhenium addition on the microstructure of the superalloy Inconel 706. Acta Mater. 2008, 56, 1609–1618. [Google Scholar] [CrossRef]
- Brynk, T.; Pakiela, Z.; Ludwichowska, K.; Romelczyk, B.; Molak, R.M.; Plocinska, M.; Kurzac, J.; Kurzynowski, T.; Chlebus, E. Fatigue crack growth rate and tensile strength of Re modified Inconel 718 produced by means of selective laser melting. Mat. Sci. Eng. A Struct. 2017, 698, 289–301. [Google Scholar] [CrossRef]
- Yoon, K.E.; Noebe, R.D.; Seidman, D.N. Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy. I: Experimental observations. Acta Mater. 2007, 55, 1145–1157. [Google Scholar] [CrossRef]
- Yoon, K.E.; Noebe, R.D.; Seidman, D.N. Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. II: Analysis of the coarsening behaviour. Acta Mater. 2007, 55, 1159–1169. [Google Scholar] [CrossRef]
- Bochenek, K.; Węglewski, W.; Morgiel, J.; Maj, M.; Basista, M. Enhancement of fracture toughness of hot-pressed NiAl-Re material by aluminum oxide addition. Mat. Sci. Eng. A Struct. 2020, 790, 139670-1-6. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Zybała, R.; Ciupinski, Ł.; Chmielewski, M.; Adamczyk-Cieślak, B.; Michalski, A.; Rajska, M.; Kurzydłowski, K.J. Microstructure and thermoelectric properties of bulk cobalt antimonide (CoSb3) skutterudites obtained by pulse plasma sintering. J. Electron. Mater. 2016, 45, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Orru, R.; Licheri, R.; Locci, A.M.; Cincotti, A.; Cao, G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mat. Sci. Eng. R. 2009, 63, 127–287. [Google Scholar] [CrossRef]
- Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A. Effect of metallic coating on the properties of copper-silicon carbide composites. Appl. Surf. Sci. 2017, 421A, 159–169. [Google Scholar] [CrossRef]
- Caron, P.; Khan, T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 1999, 3, 513–523. [Google Scholar] [CrossRef]
- Osório, W.R.; Peixoto, L.C.; Canté, M.V.; Garcia, A. Electrochemical corrosion characterization of Al-Ni alloys in a dilute sodium chloride solution. Electrochim. Acta 2010, 55, 4078–4085. [Google Scholar] [CrossRef]
- Sun, Y.; Li, C.; Yu, L.; Gao, Z.; Xia, X.; Liu, Y. Corrosion behavior of Al-15%Mg2Si alloy with 1% Ni addition. Results Phys. 2020, 17, 103129. [Google Scholar] [CrossRef]
- Deo, Y.; Guha, S.; Sarkar, K.; Mohanta, P.; Pradhan, D.; Mondal, A. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties. Appl. Surf. Sci. 2020, 515, 146078. [Google Scholar] [CrossRef]
- Liu, S.; Xia, C.; Yang, T.; Yang, Z.; Liu, N.; Li, Q. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity. Mater. Lett. 2020, 260, 126938. [Google Scholar] [CrossRef]
- Li, Y.; Wei, S.; Cheng, X.; Zhang, T.; Cheng, G. Corrosion behavior and surface characterization of tantalum implanted TiNi alloy. Surf. Coat. Technol. 2008, 202, 3017–3022. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, Y.F. The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation. Surf. Coat. Technol. 2006, 200, 4543–4548. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, X.; Wang, Y.; Li, B.; Yang, S.Z. Study of corrosion resistance property and microstructure of TiNi shape memory alloy modified by pulsed high-energy density plasma. Appl. Surf. Sci. 2000, 157, 167–177. [Google Scholar] [CrossRef]
- Kanyane, L.R.; Adesina, O.S.; Popoola, A.P.I.; Farotade, G.A.; Malatji, N. Microstructural evolution and corrosion properties of laser clad TiNi on titanium alloy (Ti6Al4V). Procedia Manuf. 2019, 35, 1267–1272. [Google Scholar] [CrossRef]
- Chmielewski, M.; Pietrzak, K. Processing, microstructure and mechanical properties of Al2O3-Cr nanocomposites. J. Eur. Ceram. Soc. 2007, 27, 1273–1279. [Google Scholar] [CrossRef]
Material Composition | Theoretical Density (g/cm3) | Measured Density (g/cm3) | Relative Density (%) |
---|---|---|---|
NiCr | 8.50 | 8.42 | 99.1 ± 0.2 |
NiCr-Re | 8.62 | 8.52 | 98.8 ± 0.3 |
NiCrRe-Al2O3 | 8.16 | 8.08 | 99.0 ± 0.2 |
Material | Ecorr (V) | jcorr (μA/cm2) | Reference |
---|---|---|---|
16Mo3 steel | −0.410 | 1.35 | Reference material |
pure NiCr | −0.296 | 0.0792 | This work |
NiCr-Re | −0.279 | 0.0455 | This work |
NiCr-Re-Al2O3 | −0.253 | 0.0134 | This work |
Al-15%Mg2Si-1%Ni | −0.819 | 0.407 | [35] |
Ni-Cu alloy | −0.404 | 22.9 | [36] |
Ti38Ni38Cu12Zr12 | −0.285 | 0.289 | [37] |
Ti42Ni42Cu8Zr8 | −0.271 | 0.147 | [37] |
TiNi | −0.288 | 0.087 | [38] |
Diamond-like carbon/TiNi | −0.088 | 0.02 | [39] |
Plasma treated TiNi | −0.052 | 0.013 | [40] |
Ti-10Ni1.2 | −0.076 | 1700 | [41] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, K.; Strojny-Nędza, A.; Kaszyca, K.; Shepa, I.; Mudra, E.; Vojtko, M.; Dusza, J.; Antal, V.; Hovancova, J.; Chmielewski, M. Oxidation and Corrosion Resistance of NiCr-Re and NiCr-Re-Al2O3 Materials Fabricated by Spark Plasma Sintering. Metals 2020, 10, 1009. https://doi.org/10.3390/met10081009
Pietrzak K, Strojny-Nędza A, Kaszyca K, Shepa I, Mudra E, Vojtko M, Dusza J, Antal V, Hovancova J, Chmielewski M. Oxidation and Corrosion Resistance of NiCr-Re and NiCr-Re-Al2O3 Materials Fabricated by Spark Plasma Sintering. Metals. 2020; 10(8):1009. https://doi.org/10.3390/met10081009
Chicago/Turabian StylePietrzak, Katarzyna, Agata Strojny-Nędza, Kamil Kaszyca, Ivan Shepa, Erika Mudra, Marek Vojtko, Jan Dusza, Vitaliy Antal, Jana Hovancova, and Marcin Chmielewski. 2020. "Oxidation and Corrosion Resistance of NiCr-Re and NiCr-Re-Al2O3 Materials Fabricated by Spark Plasma Sintering" Metals 10, no. 8: 1009. https://doi.org/10.3390/met10081009
APA StylePietrzak, K., Strojny-Nędza, A., Kaszyca, K., Shepa, I., Mudra, E., Vojtko, M., Dusza, J., Antal, V., Hovancova, J., & Chmielewski, M. (2020). Oxidation and Corrosion Resistance of NiCr-Re and NiCr-Re-Al2O3 Materials Fabricated by Spark Plasma Sintering. Metals, 10(8), 1009. https://doi.org/10.3390/met10081009