Biaxial Tensile Behavior of Commercially Pure Titanium under Various In-Plane Load Ratios and Strain Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Tensile Tests
3. Results and Discussion
3.1. Effect of Load Ratio on Biaxial Tensile Properties
3.2. Effects of Strain Rate on Biaxial Tensile Properties
3.3. A Modified Johnson–Cook Model under Various Strain Rates of Biaxial Loading
4. Conclusions
- The tensile strength of CP-Ti shows a significant improvement under biaxial tensile. Yield strength and ultimate tensile strength of biaxial sample are greater than that of uniaxial sample, in which the equi-biaxial sample shows the highest strength.
- The tensile strength of CP-Ti is strain rate dependent. Increase in strain rate leads to remarkable improvement of tensile strength. Decreased dimple size and depth in biaxially tested specimens are also observed with increase in strain rate.
- By considering the effect of biaxially strain hardening behavior, the modified JC constitutive model is capable of capturing the effect of strain rate on biaxial tensile response.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C 2016, 62, 960–966. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, B.B.; Ma, T.H.; Li, J.; He, X.H.; Zhou, C.Y. The difference in low cycle fatigue behavior of CP-Ti under fully reversed strain and stress controlled modes along rolling direction. Mater. Sci. Eng. A 2019, 742, 211–223. [Google Scholar] [CrossRef]
- Clausen, B.; Lorentzen, T.; Bourke, M.A.; Daymond, M.R. Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater. Sci. Eng. A 1999, 259, 17–24. [Google Scholar] [CrossRef]
- Fan, G.J.; Fu, L.F.; Choo, H.; Liaw, P.K.; Browning, N.D. Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 2006, 54, 4781–4792. [Google Scholar] [CrossRef]
- Chen, X.; Jin, D.; Kim, K.S. Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Int. J. Fatig. 2006, 28, 289–299. [Google Scholar] [CrossRef]
- Jones, C.; Green, R. Pulled in different directions. Mater. World 2001, 9, 19–21. [Google Scholar]
- Khan, A.S.; Farrokh, B. Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, Experimental results over wide ranges of temperatures and strain rates. Int. J. Plast. 2006, 22, 1506–1529. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, C.Y.; Dai, Q.; He, X.H. An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures. Mater. Des. 2013, 50, 968–976. [Google Scholar] [CrossRef]
- Dastidar, I.G.; Khademi, V.; Bieler, T.R.; Pilchak, A.L.; Crimp, M.A.; Boehlert, C.J. The tensile and tensile-creep deformation behavior of Ti–8Al–1Mo–1V (wt%). Mater. Sci. Eng. A 2015, 636, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Jonsson, S.; Zhang, Y. Constitutive equations for pure titanium at elevated temperatures. Mater. Sci. Eng. A 2009, 505, 116–119. [Google Scholar] [CrossRef]
- Kulawinski, D.; Ackermann, S.; Seupel, A.; Lippmann, T.; Henkel, S.; Kuna, M.; Weidner, A.; Biermann, H. Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng. A 2015, 642, 317–329. [Google Scholar] [CrossRef]
- Cheng, C.; Wan, M.; Meng, B.; Zhao, R.; Han, W.P. Size effect on the yield behavior of metal foil under multiaxial stress states: Experimental investigation and modelling. Int. J. Mech. Sci. 2019, 151, 760–771. [Google Scholar] [CrossRef]
- Wolf, C.H.; Burgold, A.; Henkel, S.; Kuna, M.; Biermann, H. Crack growth behaviour in biaxial stress fields: Calculation of K-factors for cruciform specimens. Theor. Appl. Fract. Mec. 2020, 107, 102521. [Google Scholar] [CrossRef]
- Wolf, C.H.; Henkel, S.; Biermann, H. Behaviour of metastable and stable austenitic stainless steels under planar-biaxial load. In Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites; Springer: Berlin/Heidelberg, Germany, 2020; pp. 451–483. [Google Scholar]
- Kleemola, H.J.; Ranta-Eskola, A.J. Comparison of the strain-hardening parameters of sheet metals in uniaxial and biaxial tension. Metall. Mater. Trans. A 1976, 7, 595–599. [Google Scholar] [CrossRef]
- Kubo, M.; Nakazawa, Y.; Yoshida, H.; Yonemura, S.; Hama, T.; Takuda, H. Effect of microstructure variation on differential hardening behavior of steel sheets under biaxial tensile state. ISIJ Int. 2016, 56, 2259–2266. [Google Scholar] [CrossRef]
- Liu, W.; Guines, D.; Leotoing, L.; Ragneau, E. Identification of strain rate-dependent mechanical behaviour of DP600 under in-plane biaxial loadings. Mater. Sci. Eng. A 2016, 676, 366–376. [Google Scholar] [CrossRef]
- Kuwabara, T.; Kuroda, M.; Tvergaard, V. Use of abrupt strain path change for determining subsequent yield surface: Experimental study with metal sheets. Acta Mater. 2000, 48, 2071–2079. [Google Scholar] [CrossRef]
- Yanaga, D.; Kuwabara, T.; Uema, N.; Asano, M. Material modeling of 6000 series aluminum alloy sheets with different density cube structures and effect on the accuracy of finite element simulation. Int. J. Solids Struct. 2012, 49, 3488–3495. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Li, X.X.; Lang, L.H.; Song, Q.; Liu, K.N. Forming limit in thermal cruciform biaxial tensile testing of titanium alloy. J. Mater. Process. Tech. 2017, 240, 354–361. [Google Scholar] [CrossRef]
- Xiao, R.; Li, X.X.; Lang, L.H.; Chen, Y.K.; Yang, Y.F. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures. Mater. Des. 2016, 94, 286–294. [Google Scholar] [CrossRef]
- Srinivasan, N.; Velmurugan, R.; Kumar, R.; Singh, S.K.; Pant, B. Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension. Mater. Sci. Eng. A 2016, 674, 540–551. [Google Scholar] [CrossRef]
- Ambroziak, A. Mechanical properties of Precontraint 1202S coated fabric under biaxial tensile test with different load ratios. Constr. Build. Mater. 2015, 80, 210–224. [Google Scholar] [CrossRef]
- Broomhead, P.; Grieve, R.J. The effect of strain rate on the strain to fracture of a sheet steel under biaxial tensile stress conditions. J. Eng. Mater.-T. ASME 1982, 104, 102–106. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Khan, A.S.; Huang, S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5− 104 s−1. Int. J. Plast. 1992, 8, 397–424. [Google Scholar] [CrossRef]
- Lee, W.S.; Liu, C.Y. The effects of temperature and strain rate on the dynamic flow behaviour of different steels. Mater. Sci. Eng. A 2006, 426, 101–113. [Google Scholar] [CrossRef]
- Delobelle, P.; Oytana, C. Modeling of 316 Stainless Steel (17.12 Sph.) Mechanical properties using biaxial experiments—Part II: Model and simulation. J. Press. Vess-T. ASME 1987, 109, 455–459. [Google Scholar] [CrossRef]
- Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece. ISO 16842. 1 October 2014.
- Zhu, Z.; Lu, Z.; Zhang, P.; Fu, W.; Zhou, C.; He, X. Optimal design of a miniaturized cruciform specimen for biaxial testing of ta2 alloys. Metals 2019, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Benito, J.A.; Jorba, J.; Manero, J.M.; Roca, A. Change of young’s modulus of cold-deformed pure iron in a tensile test. Metall. Mater. Trans. A 2005, 36, 3317–3324. [Google Scholar] [CrossRef]
- Nixon, M.E.; Lebensohn, R.A.; Cazacu, O.; Liu, C. Experimental and finite-element analysis of the anisotropic response of high-purity α-titanium in bending. Acta Mater. 2010, 58, 5759–5767. [Google Scholar] [CrossRef]
- Murasawa, G.; Morimoto, T.; Yoneyama, S. Nucleation and growth behavior of twin region around yield point of polycrystalline pure Ti. Exp. Mech. 2012, 52, 503–512. [Google Scholar] [CrossRef]
- Roth, A.; Lebyodkin, M.A.; Lebedkina, T.A.; Lecomte, J.S.; Richeton, T.; Amouzou, K.E.K. Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions. Mater. Sci. Eng. A 2014, 596, 236–243. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.; Yang, M.; Su, G.; Zhao, R.; Mao, P.; Wang, F.; Sun, S. Microscopic mechanism exploration and constitutive equation construction for compression characteristics of AZ31-TD magnesium alloy at high strain rate. Mater. Sci. Eng. A 2020, 771, 138571. [Google Scholar] [CrossRef]
- Härtel, M.; Pfeiffer, S.; Schmaltz, S.; Söhngen, B.; Kulawinski, D.; Willner, K.; Henkel, S.; Biermann, H.; Wagner, M.F. On the identification of an effective cross section for a cruciform specimen. Strain 2018, 54, 12257. [Google Scholar] [CrossRef]
- Zhu, Z. Investigation on Tensile Mechanical Behavior of Commercial Pure Titanium TA2 under Biaxial Loading. Master’s Thesis, Nanjing Tech University, Nanjing, China, 2020. [Google Scholar]
- Chen, G.; Feng, S.; Zhang, X.; Cui, Y.; Shi, S. Deformation mechanisms of zirconium alloys under biaxial tension at room temperature. Mater. Lett. 2020, 271, 127773. [Google Scholar] [CrossRef]
- Das, A. Effect of stress state on fracture features. Metall. Mater. Trans. A 2018, 49, 1425–1432. [Google Scholar] [CrossRef]
- Kestner, S.C.; Koss, D.A. On the influence of strain-path changes on fracture. Metall. Mater. Trans. A 1987, 18, 637–639. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K. A criterion for ductile fracture in sheets under biaxial loading. Metall. Mater. Trans. A 1976, 7, 523–533. [Google Scholar] [CrossRef]
- Mompiou, F.; Caillard, D.; Legros, M.; Mughrabi, H. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Mater. 2012, 60, 3402–3414. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wu, L.J.; Sun, G.F.; Luo, K.Y.; Zhang, Y.K.; Cai, J.; Cui, C.Y.; Luo, X.M. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266. [Google Scholar] [CrossRef]
- Martínez, R.A. Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing. Eng. Fract. Mech. 2010, 77, 2749–2762. [Google Scholar] [CrossRef]
- Abbassi, F.; Mistou, S.; Zghal, A. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests. Mater. Des. 2013, 49, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Samantaray, D.; Mandal, A.K. A Bhaduri, Comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comp. Mater. Sci. 2009, 47, 568–576. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Chen, H.; Zhang, T.; Gong, J. A modified constitutive model for tensile deformation of 9% Cr steel under prior fatigue loading. Mech. Mater. 2019, 136, 103093. [Google Scholar] [CrossRef]
- Lostado-Lorza, R.; Escribano-García, R.; Fernandez-Martinez, R.; Martínez-Calvo, M.Á. Using genetic algorithms with multi-objective optimization to adjust finite element models of welded joints. Metals 2018, 8, 230. [Google Scholar] [CrossRef] [Green Version]
- Íñiguez-Macedo, S.; Lostado-Lorza, R.; Escribano-García, R.; Martínez-Calvo, M.Á. Finite element model updating combined with multi-response optimization for hyper-elastic materials characterization. Materials 2019, 12, 1019. [Google Scholar] [CrossRef] [Green Version]
Testing Direction | Load Ratio (RD/TD) | Yield Strength at RD (MPa) | Yield Strength at TD (MPa) |
---|---|---|---|
Uniaxial | 0:4 | 280 | |
Biaxial | 1:4 | 334 | |
Biaxial | 2:4 | 417 | |
Biaxial | 3:4 | 332 | 412 |
Biaxial | 4:4 | 436 | 428 |
Biaxial | 4:3 | 417 | 355 |
Biaxial | 4:2 | 387 | |
Biaxial | 4:1 | 355 | |
Uniaxial | 4:0 | 310 |
Testing Direction | Displacement Ratio (RD/TD) | Displacement Rate (mm/s) | Strain Rate at RD | Strain Rate at TD | Yield Strength at RD (MPa) | Ultimate Tensile Strength at RD (MPa) | Yield Strength at TD (MPa) | Ultimate Tensile Strength at TD (MPa) |
---|---|---|---|---|---|---|---|---|
Uniaxial | 0.001 | 2.26 × 10−5 | 254 | 371 | ||||
Uniaxial | 0.01 | 2.88 × 10−4 | 266 | 389 | ||||
Uniaxial | 0.1 | 2.90 × 10−3 | 297 | 413 | ||||
Uniaxial | 0.001 | 2.31 × 10−5 | 269 | 375 | ||||
Uniaxial | 0.01 | 2.97 × 10−4 | 283 | 396 | ||||
Uniaxial | 0.1 | 2.96 × 10−3 | 325 | 415 | ||||
Biaxial | 1:1 | 0.001 | 7.98 × 10−5 | 8.30 × 10−5 | 383 | 495 | 439 | 515 |
Biaxial | 1:1 | 0.005 | 2.37 × 10−4 | 1.35 × 10−4 | 387 | 493 | 455 | 520 |
Biaxial | 1:1 | 0.01 | 5.04 × 10−4 | 5.17 × 10−4 | 414 | 520 | 478 | 540 |
Biaxial | 1:1 | 0.05 | 2.72 × 10−3 | 1.67 × 10−3 | 433 | 544 | 503 | 538 |
Biaxial | 1:1 | 0.1 | 5.25 × 10−3 | 5.55 × 10−3 | 459 | 530 | 528 | 558 |
Test No. | Strain Rate | A (MPa) | B1 (MPa) | n1 | B2 (MPa) | n2 | C |
---|---|---|---|---|---|---|---|
1 | 7.98 × 10−5 | 254 | 1254 | 0.45 | −114 | 23 | 0.56 |
2 | 2.37 × 10−4 | 254 | 1192 | 0.45 | −160 | 21.9 | 0.56 |
3 | 5.04 × 10−4 | 254 | 914 | 0.45 | −164 | 15.2 | 0.56 |
4 | 2.72 × 10−3 | 254 | 783 | 0.45 | −184 | 15.8 | 0.56 |
5 | 5.25 × 10−3 | 254 | 683 | 0.45 | −183 | 14.1 | 0.56 |
Test No. | Strain Rate | A (MPa) | B1 (MPa) | n1 | B2 (MPa) | n2 | C |
---|---|---|---|---|---|---|---|
1 | 8.30 × 10−5 | 269 | 329 | 0.2 | −54 | −685 | 0.15 |
2 | 1.35 × 10−4 | 269 | 301 | 0.2 | −61 | −541 | 0.15 |
3 | 5.17 × 10−4 | 269 | 201 | 0.2 | −54 | −532 | 0.15 |
4 | 1.67 × 10−3 | 269 | 127 | 0.2 | −24 | −410 | 0.15 |
5 | 5.55 × 10−3 | 269 | 80 | 0.2 | −28.4 | −406 | 0.15 |
Direction | A (MPa) | B (MPa) | n | C |
---|---|---|---|---|
RD-biaxial | 254 | |||
TD-biaxial | 269 |
Model | Error | RD | TD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
7.98 × 10−5 | 2.37 × 10−4 | 5.04 × 10−4 | 2.72 × 10−3 | 5.25 × 10−3 | 8.30 × 10−5 | 1.35 × 10−4 | 5.17 × 10−4 | 1.67 × 10−3 | 5.55 × 10−3 | ||
Original JC model | MAE | 20.91 | 42.46 | 85.98 | 142.15 | 203.00 | 23.09 | 23.87 | 8.54 | 60.47 | 104.18 |
RMSE | 24.35 | 44.70 | 89.28 | 148.04 | 208.96 | 25.21 | 25.98 | 10.73 | 60.83 | 104.75 | |
Modified model | MAE | 9.38 | 5.90 | 13.64 | 7.63 | 8.01 | 8.95 | 2.87 | 5.22 | 4.35 | 7.24 |
RMSE | 11.62 | 7.16 | 19.03 | 8.76 | 9.23 | 11.00 | 4.67 | 5.78 | 6.35 | 7.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhu, Z.; Zhou, C.; He, X. Biaxial Tensile Behavior of Commercially Pure Titanium under Various In-Plane Load Ratios and Strain Rates. Metals 2021, 11, 155. https://doi.org/10.3390/met11010155
Zhang W, Zhu Z, Zhou C, He X. Biaxial Tensile Behavior of Commercially Pure Titanium under Various In-Plane Load Ratios and Strain Rates. Metals. 2021; 11(1):155. https://doi.org/10.3390/met11010155
Chicago/Turabian StyleZhang, Wei, Zhikang Zhu, Changyu Zhou, and Xiaohua He. 2021. "Biaxial Tensile Behavior of Commercially Pure Titanium under Various In-Plane Load Ratios and Strain Rates" Metals 11, no. 1: 155. https://doi.org/10.3390/met11010155
APA StyleZhang, W., Zhu, Z., Zhou, C., & He, X. (2021). Biaxial Tensile Behavior of Commercially Pure Titanium under Various In-Plane Load Ratios and Strain Rates. Metals, 11(1), 155. https://doi.org/10.3390/met11010155