Interaction of Migrating Twin Boundaries with Obstacles in Magnesium
Abstract
:1. Introduction
2. Model
2.1. Atomistic Simulations
2.2. FE Model
3. Results
3.1. Atomistic Simulations
3.2. FE Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Yoo, M.H. Slip, twinning, and fracture in hexagonal close-packed metals. Met. Trans. 1981, 12, 409–418. [Google Scholar] [CrossRef]
- Yoo, M.H.; Agnew, S.R.; Morris, J.R.; Ho, K.M. Non-basal slip systems in HCP metals and alloys: Source mechanism. Mater. Sci. Eng. 2001, A319–A321, 87–92. [Google Scholar] [CrossRef]
- Sandlobes, S.; Friak, M.; Neugebauer, J.; Raabe, D. Basal and non-basal dislocation slip in Mg-Y. Mater. Sci. Eng. A 2013, A576, 61–68. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloy 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Andritsos, E.I.; Paxton, A.T. Effects of calcium on planar fault energies in ternary magnesium alloys. Phys. Rev. Mater. 2019, 3, 013607. [Google Scholar] [CrossRef]
- Jayara, J.; Mendis, C.L.; Ohkubo, T.; Ohishi, K.; Hono, K. Enhanced precipitation hardening of Mg-Ca alloy by Al addition. Scr. Mater. 2010, 63, 831–834. [Google Scholar] [CrossRef]
- Tehranchi, A.; Yin, B.; Curtin, W.A. Solute strengthening of basal slip in Mg alloys. Acta Mater. 2018, 151, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Stanford, N.; Geng, J.; Chun, Y.B.; Davies, C.H.J.; Nie, J.F.; Barnett, M.R. Effect of plate-shape particle distributions on the deformation behavior of magnesium alloy AZ91 in tension and compression. Acta Mater. 2012, 60, 218–228. [Google Scholar] [CrossRef]
- Wang, J.; Ferdowsi, M.R.G.; Kada, S.R.; Hutchinson, C.R.; Barnett, M.R. Influence of precipitation on yield elongation in Mg-Zn alloys. Scr. Mater. 2019, 160, 5–8. [Google Scholar] [CrossRef]
- Barnett, M.R.; Wang, H.; Guo, T. An Orowan precipitate strengthening equation for mechanical twinning in Mg. Int. J. Plast. 2019, 112, 108–122. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, Y.; El-Awady, J.A.; Raabe, D. Precipitation hardening effects on extension twinning in magnesium alloys. Int. J. Plast. 2018, 106, 186–202. [Google Scholar] [CrossRef]
- Siska, F.; Stratil, L.; Cizek, J.; Guo, T.; Barnett, M.R. Numerical analysis of twin-precipitate interactions in magnesium alloys. Acta Mater. 2021, 202, 80–87. [Google Scholar] [CrossRef]
- Stanford, M.; Barnett, M.R. Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater. Sci. Eng. A 2009, 516, 226–234. [Google Scholar] [CrossRef]
- Wang, Y.N.; Xie, C.; Fang, Q.H.; Liu, X.; Zhang, M.H.; Liu, Y.W.; Li, L.X. Toughening effect of the nanoscale twinning induced by particle/matrix interfacial fracture on fine-grained Mg alloys. Int. J. Solids Struct. 2016, 102–103, 230–237. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Y.N.; Fang, Q.H.; Ma, T.F.; Zhang, A.B.; Peng, W.F.; Shu, X.D. Effects of cooperative grain boundary sliding and migration on the particle cracking of fine-grained magnesium alloys. J. Alloys Compd. 2017, 704, 641–648. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, L.; Shan, D.; Guo, B. twin boundaries migration accompanied by void in magnesium. Comp. Mater. Sci. 2020, 184, 109857. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short- range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Liu, X.Y.; Adams, J.B.; Ercolessi, F.; Moriarty, J.A. EAM potential for magnesium from quantum mechanical forces. Modell. Simul. Mater. Sci. Eng. 1996, 4, 293–303. [Google Scholar] [CrossRef]
- Serra, A.; Pond, R.C.; Bacon, D.J. Computer simulation of the structure and mobility of twinning disclocations in hcp metals. Acta Metall. Mater. 1991, 39, 1469–1480. [Google Scholar] [CrossRef]
- Ostapovets, A.; Gröger, R. Twinning disconnections and basal—Prismatic twin boundary in magnesium. Model. Simul. Mater. Sci. Eng. 2014, 22, 025015. [Google Scholar] [CrossRef]
- Long, T.R.; Smith, C.S. Single-crystal elastic constants of magnesium and magnesium alloys. Acta Metall. 1957, 5, 200–207. [Google Scholar] [CrossRef]
- Robson, J.D. The effect of internal stresses due to precipitates on twin growth in magnesium. Acta Mater. 2016, 121, 277–287. [Google Scholar] [CrossRef]
- Ostapovets, A.; Serra, A. Characterization of the matrix–twin interface of a twin during growth. Philos. Mag. 2014, 94, 2827–2839. [Google Scholar] [CrossRef]
- Stanford, N.; Taylor, A.S.; Cizek, P.; Siska, F.; Ramajayam, M.; Barnett, M.R. twinning in magnesium-based lamellar microstructures. Scr. Mater. 2012, 67, 704–707. [Google Scholar] [CrossRef]
Tensor Component | Value [GPa] |
---|---|
C1111 | 59.7 |
C2222 | 59.7 |
C3333 | 61.7 |
C1212 | 16.8 |
C2323 | 16.4 |
C3131 | 16.4 |
C1122 | 26.2 |
C2233 | 20.8 |
C3311 | 20.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostapovets, A.; Kushnir, K.; Máthis, K.; Šiška, F. Interaction of Migrating Twin Boundaries with Obstacles in Magnesium. Metals 2021, 11, 154. https://doi.org/10.3390/met11010154
Ostapovets A, Kushnir K, Máthis K, Šiška F. Interaction of Migrating Twin Boundaries with Obstacles in Magnesium. Metals. 2021; 11(1):154. https://doi.org/10.3390/met11010154
Chicago/Turabian StyleOstapovets, Andriy, Konstantin Kushnir, Kristián Máthis, and Filip Šiška. 2021. "Interaction of Migrating Twin Boundaries with Obstacles in Magnesium" Metals 11, no. 1: 154. https://doi.org/10.3390/met11010154
APA StyleOstapovets, A., Kushnir, K., Máthis, K., & Šiška, F. (2021). Interaction of Migrating Twin Boundaries with Obstacles in Magnesium. Metals, 11(1), 154. https://doi.org/10.3390/met11010154