Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbents
2.2. Batch Experiments
2.3. Continuous Sorption Tests
2.4. Characterization Techniques
3. Results
3.1. Batch Experiments
3.1.1. Effect of pH
3.1.2. Effect of Arsenic Concentration
3.2. Arsenic Adsorption in Caracarani River Waters
3.3. Continuous Adsorption Tests
3.3.1. Effect of Feed Flow Rate
3.3.2. Effect of Bed Height
3.3.3. Effect of Feeding System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EPA (United States Environmental Protection Agency). Integrated Risk Information System (IRIS). 1991. Available online: https://www.epa.gov/iris (accessed on 31 August 2021).
- Rasheed, H.; Kay, P.; Slack, R.; Gong, Y.Y. Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. Sci. Total Environ. 2018, 634, 366–373. [Google Scholar] [CrossRef]
- WHO. World Health Organization, Guidelines for Drinking Water Quality, Health Criteria and Other Supporting Information; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Pal, P. Chapter 4—Arsenic removal by membrane filtration. In Groundwater Arsenic Remediation; Pal, P., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 105–177. [Google Scholar]
- Pal, P. Chapter 2—Chemical treatment methods in arsenic removal. In Groundwater Arsenic Remediation; Pal, P., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 25–70. [Google Scholar]
- Mondal, M.K.; Garg, R. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ. Sci. Pollut. Res. 2017, 24, 13295–13306. [Google Scholar] [CrossRef]
- El-sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Parkinson, G.S. Iron oxide surfaces. Surf. Sci. Rep. 2016, 71, 272–365. [Google Scholar]
- Hennebel, T.; De Gusseme, B.; Boon, N.; Verstraete, W. Biogenic metals in advanced water treatment. Trends Biotechnol. 2009, 27, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.-S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Amirnia, S.; Ray, M.B.; Margaritis, A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem. Eng. J. 2015, 264, 863–872. [Google Scholar] [CrossRef]
- Castro, L.; Rocha, F.; Muñoz, J.Á.; González, F.; Blázquez, M.L. Batch and continuous chromate and zinc sorption from electroplating effluents using biogenic iron precipitates. Minerals 2021, 11, 349. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Zhou, Y.-J.; Zhang, J.; Dong, Y.; Liu, F.-W.; Wu, Z.-H.; Bi, W.-L.; Qin, J.-M. Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability. Environ. Technol. 2021. [Google Scholar] [CrossRef]
- Saunders, J.A.; Lee, M.-K.; Dhakal, P.; Ghandehari, S.S.; Wilson, T.; Billor, M.Z.; Uddin, A. Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite. Appl. Geochem. 2018, 96, 233–243. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, L.; Dong, F.; Hudson-Edwards, K.A. Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization. Chemosphere 2017, 168, 529–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Jung, J.; Pawar, R.R.; Kim, M.; Lalhmunsiama; Lee, S.-M. Arsenate and phosphate removal from water using Fe-sericite composite beads in batch and fixed-bed systems. J. Ind. Eng. Chem. 2017, 47, 375–383. [Google Scholar] [CrossRef]
- Castro, L.; Blázquez, M.L.; González, F.; Muñoz, J.A.; Ballester, A. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 2018, 179, 44–51. [Google Scholar] [CrossRef]
- Guerra, P.; Simonson, K.; González, C.; Gironás, J.; Escauriaza, C.; Pizarro, G.; Bonilla, C.; Pasten, P. Daily freeze–thaw cycles affect the transport of metals in streams affected by acid drainage. Water 2016, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Guerra, P.; Gonzalez, C.; Escauriaza, C.; Pizarro, G.; Pasten, P. Incomplete mixing in the fate and transport of arsenic at a river affected by acid drainage. Water Air Soil Pollut. 2016, 227, 73. [Google Scholar] [CrossRef]
- Stanić, T.; Daković, A.; Živanović, A.; Tomašević-Čanović, M.; Dondur, V.; Milićević, S. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environ. Chem. Lett. 2009, 7, 161–166. [Google Scholar] [CrossRef]
- Das, T.K.; Sakthivel, T.S.; Jeyaranjan, A.; Seal, S.; Bezbaruah, A.N. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. Chemosphere 2020, 253, 126702. [Google Scholar] [CrossRef]
- Pan, H.; Hou, H.; Chen, J.; Li, H.; Wang, L. Adsorption of arsenic on iron modified attapulgite (Fe/ATP): Surface complexation model and DFT studies. Adsorption 2018, 24, 459–469. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Z.; Liu, S.; Hong, J.; Ma, J.; Qiu, Y.; Chen, J. Facile hydrothermal synthesis of nanostructured hollow iron–cerium alkoxides and their superior arsenic adsorption performance. ACS Appl. Mater. Interfaces 2014, 6, 14016–14025. [Google Scholar] [CrossRef]
- Vieira, B.R.C.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S.; Santos, S.C.R. Arsenic removal from water using iron-coated seaweeds. J. Environ. Manag. 2017, 192, 224–233. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Vigneswaran, S.; Ngo, H.H.; Kandasamy, J. Arsenic removal by iron oxide coated sponge: Experimental performance and mathematical models. J. Hazard. Mater. 2010, 182, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zhai, L.; Qiao, T.; Zhang, J.; Li, D. Removal of As(V) by a core-shell magnetic nanoparticles synthesized with iron-containing water treatment residuals. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127074. [Google Scholar] [CrossRef]
- Wang, Y.; Morin, G.; Ona-Nguema, G.; Brown, G.E. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite. Environ. Sci. Technol. 2014, 48, 14282–14290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Morin, G.; Ona-Nguema, G.; Juillot, F.; Calas, G.; Brown, G.E. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Environ. Sci. Technol. 2011, 45, 7258–7266. [Google Scholar] [CrossRef] [PubMed]
- Morin, G.; Wang, Y.; Ona-Nguema, G.; Juillot, F.; Calas, G.; Menguy, N.; Aubry, E.; Bargar, J.R.; Brown, G.E. EXAFS and HRTEM evidence for As(III)-containing surface precipitates on nanocrystalline magnetite: Implications for As sequestration. Langmuir 2009, 25, 9119–9128. [Google Scholar] [CrossRef]
- Perez, J.P.H.; Tobler, D.J.; Thomas, A.N.; Freeman, H.M.; Dideriksen, K.; Radnik, J.; Benning, L.G. Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite. ACS EarthSpace Chem. 2019, 3, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Rehm, B.H.A. Alginates: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mondal, M.K. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column. J. Environ. Manag. 2009, 90, 3266–3271. [Google Scholar] [CrossRef]
- He, L.; Hu, W.; Wang, X.; Liu, Y.; Jiang, Y.; Meng, Y.; Xiao, Q.; Guo, X.; Zhou, Y.; Bi, Y.; et al. Analysis of heavy metal contamination of agricultural soils and related effect on population health-a case study for east river basin in China. Int. J. Environ. Res. Public Health 2020, 17, 1996. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.; Singh, S.; Kumar, A. Heavy metal contamination of soil, irrigation water and vegetables in peri-urban agricultural areas and markets of Delhi. Water Environ. Res. 2015, 87, 2027–2034. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO irrigation and drainage paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; Volume 29. [Google Scholar]
- Carabante, I.; Grahn, M.; Holmgren, A.; Kumpiene, J.; Hedlund, J. Influence of Zn(II) on the adsorption of arsenate onto ferrihydrite. Environ. Sci. Technol. 2012, 46, 13152–13159. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Blázquez, M.L.; González, F.; Muñoz, J.A.; Ballester, A. Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach. Sci. Total Environ. 2017, 598, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Lim, J.; Park, J.; Kwak, H.; Min, S.; Kim, K.; Lee, H.; Nahm, C.H.; Park, P.-K. Immobilization of hydrous iron oxides in porous alginate beads for arsenic removal from water. Environ. Sci. Water Res. Technol. 2018, 4, 1114–1123. [Google Scholar] [CrossRef]
pH | Redox Potential | Conductivity (mS/cm) | Fe (mg/L) | As (mg/L) | Zn (mg/L) |
---|---|---|---|---|---|
2.24 | 706 | 4.84 | 127 ± 18 | 3.2 ± 0.1 | 10 ± 5 |
Adsorbate | pH | Langmuir Parameters | Freundlich Parameters | ||||
---|---|---|---|---|---|---|---|
qmax (mmol/g) | KL (mmol/L) | R2 | KF (L/g) | n | R2 | ||
As(III) | 10 | 0.52 | 0.21 | 0.90 | 0.476 | 2.13 | 0.98 |
As(V) | 2 | 0.64 | 0.019 | 0.99 | 0.636 | 6.25 | 0.91 |
Adsorbent | Adsorbate | qc (mg/g) | Reference |
---|---|---|---|
Fe(III)-natural zeolitic tuff | As(V) | 1.55 | [21] |
Graphene oxide iron nanohybrid | As(III) | 306 | [22] |
As(V) | 431 | ||
Fe-attapulgite | As (V) | 5.2 | [23] |
Nanostructured hollow iron-cerium alkoxides | As(III) | 266.0 | [24] |
As(V) | 206.6 | ||
Iron-coated seaweed | As(III) | 4.2 | [25] |
As(V) | 7.3 | ||
Iron-oxide-coated sponge | As(III) | 4.2 | [26] |
As(V) | 4.6 | ||
Core-shell magnetic composite | As(V) | 13.47 | [27] |
Biogenic iron precipitates | As(III) | 38.96 | This study |
As(V) | 47.95 |
Element | Feeding System | Adsorbent (g) | Flow Rate (mL/min) | Bed Height (cm) | Time (min) | Metr (mmol) | Mead (mmol) | % Ads | qc (mmol/g) |
---|---|---|---|---|---|---|---|---|---|
As | Drop | 7.87 | 1 | 3 | 90 | 2.77 | 2.77 | 100 | 0.35 |
Zn | Drop | 7.87 | 1 | 3 | 90 | 6.40 | 3.92 | 61.2 | 0.50 |
As | Drop | 13.35 | 1 | 6 | 270 | 8.07 | 8.06 | 99.9 | 0.51 |
Zn | Drop | 13.35 | 1 | 6 | 270 | 21.12 | 16.61 | 78.6 | 1.06 |
As | Reverse | 7.87 | 1 | 3 | 330 | 8.32 | 8.32 | 100 | 1.03 |
Zn | Reverse | 7.87 | 1 | 3 | 330 | 26.47 | 18.36 | 69.4 | 2.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, L.; Ayala, L.A.; Vardanyan, A.; Zhang, R.; Muñoz, J.Á. Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems. Metals 2021, 11, 1608. https://doi.org/10.3390/met11101608
Castro L, Ayala LA, Vardanyan A, Zhang R, Muñoz JÁ. Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems. Metals. 2021; 11(10):1608. https://doi.org/10.3390/met11101608
Chicago/Turabian StyleCastro, Laura, Lesly Antonieta Ayala, Arevik Vardanyan, Ruiyong Zhang, and Jesús Ángel Muñoz. 2021. "Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems" Metals 11, no. 10: 1608. https://doi.org/10.3390/met11101608
APA StyleCastro, L., Ayala, L. A., Vardanyan, A., Zhang, R., & Muñoz, J. Á. (2021). Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems. Metals, 11(10), 1608. https://doi.org/10.3390/met11101608