Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copper Sulphide ore Sample
2.2. Curing Experiments
2.3. Leaching Test
3. Results and Discussion
3.1. Initial Sample Characterization
3.2. Characterization of Cured Ore Samples
3.3. Leaching with and without Pretreatment
3.3.1. Leaching Test without Pretreatment
3.3.2. Leaching Test with Pretreatment
3.3.3. Characterization of Leaching Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Solminihac, H.; Gonzales, L.E.; Cerda, R. Copper mining productivity: Lessons from Chile. J. Policy Model. 2018, 40, 182–193. [Google Scholar] [CrossRef]
- Olson, G.J.; Brierley, J.A.; Brierley, C.L. Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2003, 63, 249–257. [Google Scholar] [CrossRef]
- Benavente, O.; Cecilia Herníndez, M.; Melo, E.; Núñez, D.; Quezada, V.; Zepeda, Y. Copper dissolution from black copper ore under oxidizing and reducing conditions. Metals 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Elgueta, J.; Cánovas, M.; García, A.; Zárate, R. Electrocoalescence of emulsions in raffinate from the solvent extraction phase under AC electrical fields. J. Mater. Res. Technol. 2020, 9, 490–497. [Google Scholar] [CrossRef]
- Cánovas, M.; Valenzuela, J.; Romero, L.; González, P. Characterization of electroosmotic drainage: Application to mine tailings and solid residues from leaching. J. Mater. Res. Technol. 2020, 9, 2960–2968. [Google Scholar] [CrossRef]
- Beiza, L.; Quezada, V.; Melo, E.; Valenzuela, G. Electrochemical Behaviour of Chalcopyrite in Chloride Solutions. Metals 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Cochilco. Proyección de la Producción de Cobre en 2018–2029; Cochilco: Santiago, Chile, 2018.
- Velásquez Yévenes, L. The Kinetics of the Dissolution of Chalcopyrite in Chloride Media. Ph.D. Thesis, Murdoch University, Perth, Australia, 2009. [Google Scholar]
- Barrera-Mendoza, G.E.; Lapidus, G.T. The effect of chemical additives on the electro-assisted reductive pretreatment of chalcopyrite. Hydrometallurgy 2015, 158, 35–41. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Arai, M.; Miki, H.; Tsunekawa, M.; Hirajima, T. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 2002, 63, 257–267. [Google Scholar] [CrossRef]
- Winarko, R.; Dreisinger, D.B.; Miura, A.; Tokoro, C.; Liu, W. Kinetic modelling of chalcopyrite leaching assisted by iodine in ferric sulfate media. Hydrometallurgy 2020, 197, 105481. [Google Scholar] [CrossRef]
- Rodríguez, M.; Ayala, L.; Robles, P.; Sepúlveda, R.; Torres, D.; Carrillo-Pedroza, F.R.; Jeldres, R.I.; Toro, N. Leaching chalcopyrite with an imidazolium-based ionic liquid and bromide. Metals 2020, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Baba, A.A.; Ayinla, I.K.; Adekola, A.F.; Ghosh, K.M.; Ayanda, S.O.; Bale, B.R.; Sheik, R.A.; Pradhan, R.S. A Review on Novel Techniques for Chalcopyrite Ore Processing. Int. J. Min. Eng. Miner. Process. 2012, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bobadilla-Fazzini, R.A.; Pérez, A.; Gautier, V.; Jordan, H.; Parada, P. Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks. Hydrometallurgy 2017, 168, 26–31. [Google Scholar] [CrossRef]
- Choubey, P.K.; Lee, J.C.; Kim, M.S.; Kim, H.S. Conversion of chalcopyrite to copper oxide in hypochlorite solution for selective leaching of copper in dilute sulfuric acid solution. Hydrometallurgy 2018, 178, 224–230. [Google Scholar] [CrossRef]
- Dreisinger, D. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy 2006, 83, 10–20. [Google Scholar] [CrossRef]
- Klauber, C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int. J. Miner. Process. 2008, 86, 1–17. [Google Scholar] [CrossRef]
- Agacayak, T.; Aras, A.; Aydogan, S.; Erdemoglu, M. Leaching of chalcopyrite concentrate in hydrogen peroxide solution. Physicochem. Probl. Miner. Process. 2014, 50, 657–666. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Qian, L.; Sun, M.; Lv, X.; Zhang, L.; Petersen, J.; Qiu, G. A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis. Miner. Eng. 2020, 158, 106586. [Google Scholar] [CrossRef]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating copper leaching from sulfide ores in acid-nitrate-chloride media using agglomeration and curing as pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Quezada, V.; Velásquez, L.; Roca, A.; Benavente, O.; Melo, E.; Keith, B. Effect of curing time on the dissolution of a secondary copper sulphide ore using alternative water resources. IOP Conf. Ser. Mater. Sci. Eng. 2018, 427. [Google Scholar] [CrossRef] [Green Version]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Keith, B.; Melo, E. Effect of pretreatment prior to leaching on a chalcopyrite mineral in acid media using NaCl and KNO3. J. Mater. Res. Technol. 2020, 9, 10316–10324. [Google Scholar] [CrossRef]
- Cerda, C.; Taboada, M.; Jamett, N.; Ghorbani, Y.; Hernández, P. Effect of Pretreatment on Leaching Primary Copper Sulfide in Acid-Chloride Media. Minerals 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Kodali, P. Pretreatment of Copper ore Prior to Heap Leaching. Master’s Thesis, The University of Utah, Salt Lake City, UT, USA, 2010. [Google Scholar]
- Velásquez-Yévenes, L.; Quezada-Reyes, V. Influence of seawater and discard brine on the dissolution of copper ore and copper concentrate. Hydrometallurgy 2018, 180, 88–95. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Melo, E. The Effects of Sulphuric Acid and Sodium Chloride Agglomeration and Curing on Chalcopyrite Leaching. Metals 2021, 11, 873. [Google Scholar] [CrossRef]
- Bai, X.; Wen, S.; Liu, J.; Lin, Y. Response surface methodology for optimization of copper leaching from refractory flotation tailings. Minerals 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Chetty, D. Acid-Gangue Interactions in Heap Leach Operations: A Review of the Role of Mineralogy for Predicting. Metals 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Antonijević, M.M.; Dimitrijević, M.; Janković, Z. Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy 1997, 46, 71–83. [Google Scholar] [CrossRef]
- Zhang, W.; Oganov, A.R.; Goncharov, A.F.; Zhu, Q.; Boulfelfel, S.E.; Lyakhov, A.O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V.B.; Konôpková, Z. Unexpected stable stoichiometries of sodium chlorides. Science 2013, 342, 1502–1505. [Google Scholar] [CrossRef] [Green Version]
- Watling, H.R.; Shiers, D.W.; Li, J.; Chapman, N.M.; Douglas, G.B. Effect of water quality on the leaching of a low-grade copper sulfide ore. Miner. Eng. 2014, 58, 39–51. [Google Scholar] [CrossRef]
- Dutrizac, J.E. The dissolution of chalcopyrite in ferric sulfate and ferric chloride media. Metall. Trans. B 1981, 12, 371–378. [Google Scholar] [CrossRef]
- Herreros, O.; Quiroz, R.; Restovic, A.; Viñals, J. Dissolution kinetics of metallic copper with CuSO4-NaCl-HCl. Hydrometallurgy 2005, 77, 183–190. [Google Scholar] [CrossRef]
- Arce, E.M.; González, I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. Int. J. Miner. Process. 2002, 67, 17–28. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, C.; Kou, J.; Zhao, H.; Wei, D.; Xing, Y. Enhancing the leaching of chalcopyrite using Acidithiobacillus ferrooxidans under the induction of surfactant triton X-100. Minerals 2019, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Chen, L.; Wang, J.; Miao, J.; Shen, L.; Yu, R.; Gu, G.; Qiu, G.; Zeng, W. Dissolution and passivation of chalcopyrite during bioleaching by acidithiobacillus ferrivorans at low temperature. Minerals 2019, 9, 332. [Google Scholar] [CrossRef] [Green Version]
- Cháidez, J.; Parga, J.; Valenzuela, J.; Carrillo, R.; Almaguer, I. Leaching chalcopyrite concentrate with oxygen and sulfuric acid using a low-pressure reactor. Metals 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.Y.; Jeffrey, M.I.; Lawson, F. Effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 2000, 56, 189–202. [Google Scholar] [CrossRef]
Mineral | Mass, % |
---|---|
Muscovite | 54.2 |
Quartz | 29.7 |
Pyrite | 3.73 |
Orthoclase | 3.08 |
Kaolinite | 2.51 |
Chalcopyrite | 1.99 |
Smectite | 1.32 |
Alunite | 1.18 |
Chalcocite | 0.150 |
Covellite | 0.060 |
Test | More Abundant Species | Less Abundant Species |
---|---|---|
25 °C (P) | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 |
25 °C | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 |
50 °C (P) | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and Cu2S |
50 °C | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and Cu2S |
70 °C (P) | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and S |
70 °C | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and S |
90 °C (P) | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and S |
90 °C | SiO2, KAl2(AlSi3O10)(OH)2 and FeS2 | CuFeS2 and S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Melo, E.; Hernández, M. Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media. Metals 2021, 11, 1260. https://doi.org/10.3390/met11081260
Quezada V, Roca A, Benavente O, Cruells M, Melo E, Hernández M. Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media. Metals. 2021; 11(8):1260. https://doi.org/10.3390/met11081260
Chicago/Turabian StyleQuezada, Víctor, Antoni Roca, Oscar Benavente, Montserrat Cruells, Evelyn Melo, and María Hernández. 2021. "Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media" Metals 11, no. 8: 1260. https://doi.org/10.3390/met11081260
APA StyleQuezada, V., Roca, A., Benavente, O., Cruells, M., Melo, E., & Hernández, M. (2021). Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media. Metals, 11(8), 1260. https://doi.org/10.3390/met11081260