The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lonza Inc. Leaflet “ACRAWAX C”. 2010. Available online: www.lonza.com (accessed on 1 May 2017).
- Baum, M.M.; Becker, R.M.; Lappas, A.M.; Moss, J.A.; Apellian, D.; Saha, D.; Kapinus, V.A. Lubricant pyrolysis during sintering of PM compacts. Metall. Mater. Trans. B 2004, 35B, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Karamchedu, S.; Hryha, E.; Nyborg, L. Influence of process parameters on the delubrication of PM steels. Powder Metall. Prog. 2011, 11, 90–96. [Google Scholar]
- Hryha, E.; Nyborg, L. Process control system for delubrication of PM steels. Acta Metall. Slovaca 2012, 18, 60–68. [Google Scholar]
- Ecka Granules—Metal Powder Technologies. ECKA ALUMIX® 431, Brochure: Press-Ready Mix for Aluminum Sintered Parts; Ecka: Granules, Germany, 2010. [Google Scholar]
- Pieczonka, T.; Kazior, J.; Szewczyk-Nykiel, A.; Hebda, M.; Nykiel, M. The effect of the atmosphere on sintering of Alumix 431D powder. Powder Metall. 2012, 55, 354–360. [Google Scholar] [CrossRef]
- Pieczonka, T.; Kazior, J.; Laska, M. The effect of nitrogen flow rate on Acrawax decomposition and its removal during sintering of Alumix 431D grade powder. Powder Metall. 2018, 61, 149–156. [Google Scholar] [CrossRef]
- Kehl, W.; Fischmeister, H.F. Liquid phase sintering of Al-Cu compacts. Powder Metall. 1980, 23, 113–119. [Google Scholar] [CrossRef]
- Schaffer, G.B.; Hall, B.J. The influence of the atmosphere on the sintering of aluminium. Metall. Mater. Trans. A 2002, 33A, 3279–3284. [Google Scholar] [CrossRef]
- Pieczonka, T.; Schubert, T.; Baunack, S.; Kieback, B. Dimensional Behaviour of Aluminium Sintered in Different Atmospheres. Mater. Sci. Eng. A 2008, 478, 251–256. [Google Scholar] [CrossRef]
- LaDelpha, A.D.P.; Neubing, H.; Bishop, D.P. Metallurgical assessment of an emerging Al–Zn–Mg–Cu P/M alloy. Mater. Sci. Eng. A 2009, 520, 105–113. [Google Scholar] [CrossRef]
- Pieczonka, T. Disruption of an Alumina Layer During Sintering of Aluminium in Nitrogen. Arch. Metall. Mater. 2017, 62, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.N.; Huo, S.H.; Schaffer, G.B.; Qian, M. Distortion in a 7xxx Aluminum Alloy during Liquid Phase Sintering. Mater. Sci. Eng. A 2014, 45A, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Open Chemistry Database, Compound 110-30-5. Available online: http://pubchem.ncbi.nlm.nih.gov/compound/8044#section=Experimental-Properties (accessed on 1 May 2017).
- Dortmund Data Bank, Dynamic Viscosity of Nitrogen. Available online: http://www.ddbst.com/en/EED/PCP/VIS_C1056.php (accessed on 1 May 2017).
- Peace Software. Available online: http://www.peacesoftware.de/einigewerte/stickstoff_e.html (accessed on 1 May 2017).
- Huie, H.; Xinun, W. Effect of Heat Treatment on the In-Plane Anisotropy of As-Rolled 7050 Aluminum Alloy. Metals 2016, 6, 79. [Google Scholar] [CrossRef] [Green Version]
Zn | Cu | Mg | Si | Fe | Sn | Al |
---|---|---|---|---|---|---|
Mass% | ||||||
5.8 | 1.6 | 2.6 | 0.16 | Balance |
Element | Mg | Al | Cu | Zn | Sn | Total |
---|---|---|---|---|---|---|
Line | Ka | Ka | Ka | Ka | La | |
Aluminium particle | 0.425 | 99.082 | 0.214 | 0.271 | 0.008 | 100.00 |
Master alloy particle | 4.188 | 83.706 | 2.554 | 9.198 | 0.335 | 100.00 |
Physical State at RT | Density g/cm3 | Melting Point, °C | Boiling Point, °C | Flash Point, °C | Decoposition Temperature, °C | Residue |
---|---|---|---|---|---|---|
Powder | 0.97–1.068 | 135–146 | 260 | 285 | 260 | None |
Material | Pycnometr Density g/cm3 |
---|---|
Press-ready Alumix 431D powder | 2.69 |
Alumix 431D powder without lubricant | 2.75 |
Fully dense alloy (without lubricant) | 2.76 |
Flowability 1 s/50 g | Apparent Density g/cm3 | Green Density 2 g/cm3 | Ejection Force KN | Spring Back % | Green Strength 3 MPa |
---|---|---|---|---|---|
19.38 | 1.09 | 2.55 | 9.13 | 1.08 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazior, J.; Pieczonka, T.; Laska, M. The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder. Metals 2021, 11, 1259. https://doi.org/10.3390/met11081259
Kazior J, Pieczonka T, Laska M. The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder. Metals. 2021; 11(8):1259. https://doi.org/10.3390/met11081259
Chicago/Turabian StyleKazior, Jan, Tadeusz Pieczonka, and Mateusz Laska. 2021. "The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder" Metals 11, no. 8: 1259. https://doi.org/10.3390/met11081259
APA StyleKazior, J., Pieczonka, T., & Laska, M. (2021). The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder. Metals, 11(8), 1259. https://doi.org/10.3390/met11081259