Impulse Pressure-Assisted Diffusion Bonding (IPADB): Review and Outlook
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chongqing Group
3.2. Roorkee Group
3.3. Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazakov, N.F. Diffusion Bonding of Materials; Pergamon Press: Oxford, UK, 1985; ISBN 978-1483118130. [Google Scholar]
- Cooke, K.O.; Atieh, A.M. Current Trends in Dissimilar Diffusion Bonding of Titanium Alloys to Stainless Steels, Aluminium and Magnesium. J. Manuf. Mater. Process. 2020, 4, 39. [Google Scholar] [CrossRef]
- Haneklaus, N.; Reuven, R.; Cionea, C.; Hosemann, P.; Peterson, P.F. Development of engineering parameters for low pressure diffusion bonds of 316 SS tube-to-tube sheet joints for fhr heat exchangers. In Proceedings of the TMS 2016 145th Annual Meeting & Exhibition, Nashville, TN, USA, 14–18 February 2016; pp. 583–588. [Google Scholar]
- Reuven, R.; Bolind, A.; Haneklaus, N.; Cionea, C.; Andreades, C.; Buster, G.; Hosemann, P.; Peterson, P. Ni Interlayer to Improve Low-Pressure Diffusion Bonding of 316L SS Press Fit Tube-to-Tubesheet Joints for Coiled Tube Gas Heaters. J. Nucl. Eng. Radiat. Sci. 2017, 3, 030913. [Google Scholar] [CrossRef]
- Cook, G.O.; Sorensen, C.D. Overview of transient liquid phase and partial transient liquid phase bonding. J. Mater. Sci. 2011, 46, 5305–5323. [Google Scholar] [CrossRef] [Green Version]
- Gale, W.F.; Butts, D.A. Transient liquid phase bonding. Sci. Technol. Weld. Join. 2004, 9, 283–300. [Google Scholar] [CrossRef]
- Shirzadi, A.A.; Assadi, H.; Wallach, E.R. Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf. Interface Anal. 2001, 31, 609–618. [Google Scholar] [CrossRef]
- MacDonald, W.; Eagar, T. Transient liquid phase bonding. Annu. Rev. Mater. Sci. 1992, 22, 23–46. [Google Scholar] [CrossRef]
- Cooke, K.O.; Richardson, A.; Khan, T.I.; Shar, M.A. High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles. J. Manuf. Mater. Process. 2020, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, T.S.; Cooke, K.O.; Khan, T.I.; Shar, M.A. Nanoparticle Enhanced Eutectic Reaction during Diffusion Brazing of Aluminium to Magnesium. Nanomaterials 2019, 9, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, A.; Janczak-Rusch, J.; Sano, T. Joining Technology Innovations at the Macro, Micro, and Nano Levels. Appl. Sci. 2019, 9, 3568. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.; Tassou, S.A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Sci. Eng. Prog. 2020, 18, 100543. [Google Scholar] [CrossRef]
- Shirzadi, A.; Wallach, E. Analytical modelling of transient liquid phase (TLP) diffusion bonding when a temperature gradient is imposed. Acta Mater. 1999, 47, 3551–3560. [Google Scholar] [CrossRef]
- Shirzadi, A.A.; Wallach, E.R. Metal Bonding. US Patent 6,257,481 B1, 10 July 2001. [Google Scholar]
- Shirzadi, A.A.; Wallach, E.R. Temperature gradient transient liquid phase diffusion bonding: A new method for joining advanced materials. Sci. Technol. Weld. Join. 1997, 2, 89–94. [Google Scholar] [CrossRef]
- Habisch, S.; Böhme, M.; Peter, S.; Grund, T.; Mayr, P. The Effect of Interlayer Materials on the Joint Properties of Diffusion-Bonded Aluminium and Magnesium. Metals 2018, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Chuvil’Deev, V.N.; Nokhrin, A.V.; Kopylov, V.I.; Boldin, M.S.; Vostokov, M.M.; Gryaznov, M.Y.; Tabachkova, N.Y.; Tryaev, P. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering. J. Mater. Sci. 2019, 54, 14926–14949. [Google Scholar] [CrossRef]
- Aroshas, R.; Rosenthal, I.; Stern, A.; Shmul, Z.; Kalabukhov, S.; Frage, N. Silicon Carbide Diffusion Bonding by Spark Plasma Sintering Silicon Carbide Diffusion Bonding by Spark Plasma Sintering. Mater. Manuf. Process. 2015, 30, 122–126. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, K.; Hu, D.; Han, C.; Tong, Y.; Yang, X.; Wei, F.; Zhang, J.; Shen, Y.; Chen, J.; et al. Diffusion bonding between TZM alloy and WRe alloy by spark plasma sintering. J. Alloys Compd. 2018, 764, 582–590. [Google Scholar] [CrossRef]
- Song, T.F.; Jiang, X.S.; Shao, Z.Y.; Fang, Y.J.; Mo, D.F.; Zhu, D.G.; Zhu, M.H. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum 2017, 145, 68–76. [Google Scholar] [CrossRef]
- Sheng, G.M.; Huang, J.W.; Qin, B.; Zhou, B.; Qiu, S.Y.; Li, C. An experimental investigation of phase transformation superplastic diffusion bonding of titanium alloy to stainless steel. J. Mater. Sci. 2005, 40, 6385–6390. [Google Scholar] [CrossRef]
- Dai, G.Q.; Qu, W.Q.; Zhuang, H.S. Structure performance and diffusion mechanism of aluminum alloy heat pipe low tem-perature diffusion brazing joints. Chin. J. Rare Met. 2013, 37, 851. [Google Scholar]
- Norajitra, P.; Aktaa, J.; Spatafora, L.; Basuki, W. Layer Composite. WO2014060070A1. 15 October 2012. Available online: https://patents.google.com/patent/WO2014060070A1/en (accessed on 14 January 2021).
- Jiangtao, X.; Jinglong, L.; Fusheng, Z.; Zhongping, W. Pressurizing Device and Method for Vacuum Diffusion Welding Machine. CN100368135C. 2008. Available online: https://patents.google.com/patent/CN100368135C/en?oq=CN100368135C.+ (accessed on 14 January 2021).
- Qin, B.; Sheng, G.; Zhou, B.; Huang, J.; Li, C.; Qiu, S. Diffusion welding of titanium alloy and stainless steel. Chin. J. Nonferr. Metals 2004, 14, 1545–1550. [Google Scholar]
- Yuan, X.; Sheng, G.; Qin, B.; Huang, W.; Zhou, B. Impulse pressuring diffusion bonding of titanium alloy to stainless steel. Mater. Charact. 2008, 59, 930–936. [Google Scholar] [CrossRef]
- Huang, L.; Sheng, G.-M.; Li, J.; Huang, G.-J.; Yuan, X.-J. Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer. J. Cent. South. Univ. 2018, 25, 1025–1032. [Google Scholar] [CrossRef]
- Li, J.; Sheng, G. Diffusion Bonding of TiC Cermet to Stainless Steel Using Impulse Pressuring with Ti-Nb Interlayer. Rare Met. Mater. Eng. 2017, 46, 882–887. [Google Scholar]
- Wang, F.-L.; Sheng, G.-M.; Deng, Y.-Q. Impulse pressuring diffusion bonding of titanium to 304 stainless steel using pure Ni interlayer. Rare Met. 2014, 35, 331–336. [Google Scholar] [CrossRef]
- Al Hazaa, A.; Haneklaus, N. Diffusion Bonding and Transient Liquid Phase (TLP) Bonding of Type 304 and 316 Austenitic Stainless Steel—A Review of Similar and Dissimilar Material Joints. Metals 2020, 10, 613. [Google Scholar] [CrossRef]
- Yuan, X.; Sheng, G.; Tang, K. Effect of interlayer type on microstructure and mechanical property of impulse pressuring diffusion bonded joints in austenitic stainless steel to α titanium alloy. Mater. Res. Innov. 2013, 17, 186–189. [Google Scholar] [CrossRef]
- Deng, Y.; Sheng, G.; Yin, L. Impulse Pressuring Diffusion Bonding of Titanium to Stainless Steel Using a Copper Interlayer. Rare Met. Mater. Eng. 2015, 44, 1041–1045. [Google Scholar]
- Yuan, X.; Tang, K.; Deng, Y.; Luo, J.; Sheng, G. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer. Mater. Des. 2013, 52, 359–366. [Google Scholar] [CrossRef]
- Yuan, X.-J.; Sheng, G.-M.; Luo, J.; Li, J. Microstructural characteristics of joint region during diffusion-brazing of magnesium alloy and stainless steel using pure copper interlayer. Trans. Nonferr. Met. Soc. China 2013, 23, 599–604. [Google Scholar] [CrossRef]
- Sharma, G.; Dwivedi, D.K. Impulse pressure-assisted diffusion bonding of ferritic stainless steel. Int. J. Adv. Manuf. Technol. 2018, 95, 4293–4305. [Google Scholar] [CrossRef]
- Sharma, G.; Tiwari, L.; Dwivedi, D.K. Impulse Pressure Assisted Diffusion Bonding of Low Carbon Steel Using Silver Interlayer. Trans. Indian Inst. Met. 2018, 71, 11–21. [Google Scholar] [CrossRef]
- Sharma, G.; Dwivedi, D.K. Effect of pressure pulsation on bond interface characteristics of 409 ferritic stainless steel diffusion bonds. Vacuum 2017, 146, 152–158. [Google Scholar] [CrossRef]
- Sharma, G.; Dwivedi, D.K. Study of metallurgical and mechanical properties of CSEF P92 steel di ff usion bonds developed using pressure pulsation. J. Manuf. Process. 2019, 38, 196–203. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, D. Diffusion bonding of 304 austenitic stainless-steel using pressure pulses. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Ren, X.; Li, S.; Xiong, Z. Isostatic di ff usion bonding and post-solution treatment between Cr22Ni5Mo3MnSi and Cr30Ni7Mo3MnSi duplex stainless steels. J. Manuf. Process. 2018, 34, 215–224. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Yu, W.; Li, M. Fabrication of high strength bond of Ti-17 alloy using press bonding under a high bonding pressure. Mater. Lett. 2013, 108, 212–214. [Google Scholar] [CrossRef]
- Han, J.; Sheng, G.M.; Zhou, X.L.; Sun, J.X. Pulse Pressuring Diffusion Bonding of Ti Alloy/Austenite Stainless Steel Processed by Surface Self-nanocrystallization. ISIJ Int. 2009, 49, 86–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlHazaa, A.; Haneklaus, N.; Almutairi, Z. Impulse Pressure-Assisted Diffusion Bonding (IPADB): Review and Outlook. Metals 2021, 11, 323. https://doi.org/10.3390/met11020323
AlHazaa A, Haneklaus N, Almutairi Z. Impulse Pressure-Assisted Diffusion Bonding (IPADB): Review and Outlook. Metals. 2021; 11(2):323. https://doi.org/10.3390/met11020323
Chicago/Turabian StyleAlHazaa, Abdulaziz, Nils Haneklaus, and Zeyad Almutairi. 2021. "Impulse Pressure-Assisted Diffusion Bonding (IPADB): Review and Outlook" Metals 11, no. 2: 323. https://doi.org/10.3390/met11020323
APA StyleAlHazaa, A., Haneklaus, N., & Almutairi, Z. (2021). Impulse Pressure-Assisted Diffusion Bonding (IPADB): Review and Outlook. Metals, 11(2), 323. https://doi.org/10.3390/met11020323