Hot Rolling of Magnesium Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Evolution during Rolling Process
3.2. Texture Evolution during Hot Rolling
3.3. EBSD Measurements
4. Discussion
4.1. Extension Twinning and Its Influence on the Basal Texture
4.2. Shear Localization on Twins and Their Influence on the DRX
5. Conclusions
- (1)
- The original single crystal of both orientations was almost completely rotated into a new matrix of basal grains with the c-axis almost parallel to ND of the sheet. Observations of extension twinning and Schmid Factor analysis indicate that twinning was responsible for this rotation.
- (2)
- The active extension twin variants determined the intensity of the basal texture: orientation 1 presented the weakest basal texture at all strains, its extension twin variants aligned the c-axis ~30° deviated from ND, compared to orientation 2, for which its extension twins aligned the basal plane almost parallel to the sheet plane.
- (3)
- In the new basal matrix, contraction twins were observed at of and in both orientations. These contraction twins suffered shear localization attributed to easier conditions for dislocation basal slip motion inside them compared to the ‘hard’ basal matrix, leading to twin-induced CDRX, and formed recrystallized twin bands, giving rise to new recrystallized grains with non-basal orientation. These recrystallized grains contributed to the weakening of the basal texture only in orientation 1.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xin, Y.; Wang, M.; Zeng, Z.; Huang, G.; Liu, Q. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability. Scr. Mater. 2011, 64, 986–989. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Kelley, E.W.; Hosford, W.F. The Deformation Characteristics of Textured Magnesium. Trans. Metall. Soc. AIME 1968, 242, 654–661. [Google Scholar]
- Graff, S.; Brocks, W.; Steglich, D. Yielding of magnesium: From single crystal to polycrystalline aggregates. Int. J. Plast. 2007, 23, 1957–1978. [Google Scholar] [CrossRef] [Green Version]
- Wonsiewicz, B.C. Plasticity of Magnesium Crystals; Massachusetts Institute of Technology: Cambridge, MA, USA, 1966. [Google Scholar]
- Kelley, E.W.; Hosford, W. Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 1968, 242, 5–13. [Google Scholar]
- Chapuis, A.; Driver, J.H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 2011, 59, 1986–1994. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A.; Gottstein, G. On the Ductility of Magnesium Single Crystals at Ambient Temperature. Metall. Mater. Trans. A 2014, 45, 3275–3281. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A.; Gottstein, G. Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: Multiple twinning and dynamic recrystallization. Acta Mater. 2014, 76, 314–330. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A. Deformation-Induced Recrystallization of Magnesium Single Crystals at Ambient Temperature. IOP Conf. Ser. Mater. Sci. Eng. 2015, 82, 12014. [Google Scholar] [CrossRef] [Green Version]
- Molodov, K.; Al-Samman, T.; Molodov, D.; Gottstein, G. On the role of anomalous twinning in the plasticity of magnesium. Acta Mater. 2016, 103, 711–723. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A. On the diversity of the plastic response of magnesium in plane strain compression. Mater. Sci. Eng. A 2016, 651, 63–68. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A. Profuse slip transmission across twin boundaries in magnesium. Acta Mater. 2017, 124, 397–409. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A.; Korte-Kerzel, S. On the twinning shear of twins in magnesium—Experimental determination and formal description. Acta Mater. 2017, 134, 267–273. [Google Scholar] [CrossRef]
- Molodov, D.A.; Ivanov, V.A.; Gottstein, G. Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 2007, 55, 1843–1848. [Google Scholar] [CrossRef]
- Bettles, C.; Barnett, M. Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kaiser, F.; Kainer, K.U. Magnesium Alloys and Technology; John Wiley&Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Polmear, I.; StJohn, D.; Nie, J.-F.; Qian, M. Light Alloys: Metallurgy of The Light Metals; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Friedrich, H.E.; Mordike, B.L. Magnesium Technology; Springer: New York, NY, USA, 2006; Volume 212. [Google Scholar]
- Hielscher, R.; Schaeben, H. A novel pole figure inversion method: Specification of the MTEX algorithm. J. Appl. Crystallogr. 2008, 41, 1024–1037. [Google Scholar] [CrossRef]
- Nave, M.D.; Barnett, M.R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr. Mater. 2004, 51, 881–885. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Yan, H.; Fan, G.H.; Nakata, T.; Lao, C.S.; Chen, R.S.; Kamado, S.; Han, E.H.; Lu, B.H. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 2018, 157, 53–71. [Google Scholar] [CrossRef]
- Barnett, M.R.; Stanford, N.; Cizek, P.; Beer, A.; Xuebin, Z.; Keshavarz, Z. Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity. J. Miner. 2009, 61, 19–24. [Google Scholar] [CrossRef]
- Bettles, C.; Gibson, M. Current wrought magnesium alloys: Strengths and weaknesses. J. Miner. 2005, 57, 46–49. [Google Scholar] [CrossRef]
- Xu, S.W.; Matsumoto, N.; Kamado, S.; Homma, T.; Kojima, Y. Dynamic microstructural changes in Mg–9Al–1Zn alloy during hot compression. Scr. Mater. 2009, 61, 249–252. [Google Scholar] [CrossRef]
- Li, X.; Yang, P.; Wang, L.-N.; Meng, L.; Cui, F. Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31. Mater. Sci. Eng. A 2009, 517, 160–169. [Google Scholar] [CrossRef]
- Levinson, A.; Mishra, R.K.; Doherty, R.D.; Kalidindi, S.R. Influence of deformation twinning on static annealing of AZ31 Mg alloy. Acta Mater. 2013, 61, 5966–5978. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Ma, L.; Wynne, B.; Gao, J. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Čapek, J.; Máthis, K.; Clausen, B.; Barnett, M. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 2017, 130, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-G.; Park, S.H.; Lee, C.S. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010, 58, 5873–5885. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, J.H.; Moon, B.G.; You, B.S. Tension–compression yield asymmetry in as-cast magnesium alloy. J. Alloys Compd. 2014, 617, 277–280. [Google Scholar] [CrossRef]
- Godet, S.; Jiang, L.; Luo, A.A.; Jonas, J.J. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr. Mater. 2006, 55, 1055–1058. [Google Scholar] [CrossRef]
- Jiang, J.; Godfrey, A.; Liu, W.; Liu, Q. Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy. Scr. Mater. 2008, 58, 122–125. [Google Scholar] [CrossRef]
- Pei, Y.; Godfrey, A.; Jiang, J.; Zhang, Y.B.; Liu, W.; Liu, Q. Extension twin variant selection during uniaxial compression of a magnesium alloy. Mater. Sci. Eng. A 2012, 550, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Sandlöbes, S.; Diehl, M.; Sharma, L.; Roters, F.; Raabe, D. In situ observation of collective grain-scale mechanics in Mg and Mg–rare earth alloys. Acta Mater. 2014, 80, 77–93. [Google Scholar] [CrossRef]
- Molodov, D.A. Investigation of Deformation Mechanisms in Magnesium Crystals; RWTH Aachen: Aachen, Germany, 2017. [Google Scholar]
- Xie, K.Y.; Alam, Z.; Caffee, A.; Hemker, K.J. Deformation Behavior of Mg Single Crystals Compressed Along C-Axis. In Magnesium Technology 2016; Springer: New York, NY, USA, 2016; pp. 209–211. [Google Scholar]
- Al-Samman, T.; Molodov, K.D.; Molodov, D.A.; Gottstein, G.; Suwas, S. Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater. 2012, 60, 537–545. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Gao, J.; Sharp, J.; Wynne, B.; Ma, L. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1 double twins. Acta Mater. 2017, 135, 14–24. [Google Scholar] [CrossRef]
- Sabat, R.K.; Sahoo, S.K.; Panda, D.; Mohanty, U.K.; Suwas, S. Orientation dependent recrystallization mechanism during static annealing of pure magnesium. Mater. Charact. 2017, 132, 388–396. [Google Scholar] [CrossRef]
Rolling Pass | Deformation (φ) | Re-Heating Time | Thickness Reduction |
---|---|---|---|
1 | 0.05 | 10 | 4.88 |
2 | 0.05 | 10 | 9.52 |
3 | 0.05 | 10 | 13.93 |
4 | 0.05 | 10 | 18.13 |
5 | 0.05 | 10 | 22.12 |
6 | 0.06 | 10 | 26.66 |
7 | 0.06 | 10 | 30.93 |
8 | 0.10 | 10 | 34.95 |
9 | 0.10 | 10 | 41.14 |
10 | 0.12 | 10 | 47.80 |
11 | 0.12 | 10 | 53.70 |
12 | 0.15 | 10 | 60.15 |
13 | 0.15 | 10 | 65.15 |
14 | 0.17 | 10 | 71.06 |
15 | 0.17 | 10 | 75.59 |
16 | 0.20 | -- | 80.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Martínez, J.A.; Hernández-Silva, D.; Al-Samman, T. Hot Rolling of Magnesium Single Crystals. Metals 2021, 11, 443. https://doi.org/10.3390/met11030443
Estrada-Martínez JA, Hernández-Silva D, Al-Samman T. Hot Rolling of Magnesium Single Crystals. Metals. 2021; 11(3):443. https://doi.org/10.3390/met11030443
Chicago/Turabian StyleEstrada-Martínez, José Antonio, David Hernández-Silva, and Talal Al-Samman. 2021. "Hot Rolling of Magnesium Single Crystals" Metals 11, no. 3: 443. https://doi.org/10.3390/met11030443
APA StyleEstrada-Martínez, J. A., Hernández-Silva, D., & Al-Samman, T. (2021). Hot Rolling of Magnesium Single Crystals. Metals, 11(3), 443. https://doi.org/10.3390/met11030443