Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Topography Analysis
3.2. Qualitative and Quantitative Analysis
3.3. Testing of Mechanical Properties
4. Conclusions
- 1
- Following the nanosecond laser treatment, the values of the surface roughness parameters are slightly decreased for factors of 0.8 and 0.9, for Ra and rms, respectively. Following the picosecond laser treatment, it is evident that the values of Ra and rms are more prominently decreased, for a factor of 0.6, compared to the base material. The results show that the base material is preserved as there is no crater formation or evident loss of the material due to laser ablation;
- 2
- Surface treatment with laser beams at both pulse durations showed no distinguished impact on the chemical composition of the Nimonic 263 superalloy. The values of the concentrations of the elements present in the sample match well for the untreated and laser-treated sample, and show that applied laser processing is non-destructive, with preservation of the surface chemical composition;
- 3
- The results of the microhardness tests show that the applied laser modification increases the microhardness value of the Nimonic base material by ~10 percent and 14.5 percent, after nanosecond and picosecond laser processing, respectively, thus achieving the proposed enhancement of the base material;
- 4
- Laser modification of the surface surrounding the hole is causing the improvement in the resilience to deformation, since the deformation value of the base material is decreased by ~27 percent and ~40 percent, for picosecond and nanosecond laser action, respectively. The value of stress is also decreased by ~25 percent and ~36 percent, for picosecond and nanosecond laser action, respectively;
- 5
- Following the deformation and stress tests, observed microcracks more frequently appear in the cross sections compared to the outer surface which was reinforced by direct laser action. The dimensions of the cracks on the surface around the hole on the untreated material are significantly larger compared to the cracks propagated on the surface treated by the picosecond and nanosecond laser irradiation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: London, UK, 2006. [Google Scholar]
- Lee, H.T.; Hou, W.H. Development of fine-grained structure and the mechanical properties of nickel-based Superalloy 718. Mater. Sci. Eng. A 2012, 555, 13–20. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Shahriari, D.; Sadeghi, M.H.; Akbarzadeh, A.; Cheraghzadeh, M. The influence of heat treatment and hot deformation conditions on γ’ precipitate dissolution of Nimonic 115 superalloy. Int. J. Adv. Manuf. Technol. 2009, 45, 841–850. [Google Scholar] [CrossRef]
- Singh, P.N.; Singh, V. Influence of ageing treatment on work hardening behaviour of a Ni-base superalloy. Scr. Mater. 1996, 34, 1861–1865. [Google Scholar] [CrossRef]
- Park, N.K.; Kim, I.S.; Na, Y.S.; Yeom, J.T. Hot forging of a nickel-base superalloy. J. Mater. Process. Technol. 2001, 111, 98–102. [Google Scholar] [CrossRef]
- Sharma, A.K.; Anand, M.; Kumar, V.; Kumar, S.; Das, A.K. Laser Beam Treatment of Nimonic C263 Alloy: Study of Mechanical and Metallurgic Properties. In Advances in Micro and Nano Manufacturing and Surface Engineering; Shunmugam, M.S., Kanthababu, M., Eds.; Springer: Singapore, 2019; pp. 633–646. [Google Scholar]
- Li, Q.; Yang, L.; Hou, C.; Adeyemi, O.; Chen, C.; Wang, Y. Surface ablation properties and morphology evolution of K24 nickel based superalloy with femtosecond laser percussion drilling. Opt. Lasers Eng. 2019, 114, 22–30. [Google Scholar] [CrossRef]
- Romero-Jabalquinto, A.; Velasco-Tellez, A.; Zambrano-Robledo, P.; Bermudez-Reyes, B. Feasibility of manufacturing combustion chambers for aeronautical use in Mexico. J. Appl. Res. Technol. 2016, 14, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.C.; Ravikumar, V.; Beltran, A.M. Phase Precipitation and Phase Stability in Nimonic 263. Metall. Mater. Trans. A 2001, 32, 1271–1282. [Google Scholar] [CrossRef]
- Petronić, S.; Čolić, K.; Đorđević, B.; Milovanović, D.; Burzić, M.; Vučetić, F. Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy. Opt. Lasers Eng. 2020, 129, 106052. [Google Scholar] [CrossRef]
- Wang, H.; Jurgensen, J.; Decker, P.; Hu, Z.; Yan, K.; Gurevich, E.L.; Ostendorf, A. Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment. Appl. Surf. Sci. 2020, 501, 144338. [Google Scholar] [CrossRef]
- Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H. Effect on Laser Shock Peening on surface properties and residual stress of Al6061-T6. Opt. Lasers Eng. 2016, 77, 112–117. [Google Scholar] [CrossRef]
- Sundar, R.; Ganesh, P.; Gupta, R.K.; Ragvendra, G.; Pant, B.K.; Vivekanand, K.; Ranganathan, K.; Rakesh, K.; Bindra, K.S. Laser Shock Peening and its Applications: A Review. Lasers Manuf. Mater. Process. 2019, 6, 424–463. [Google Scholar] [CrossRef]
- Marimuthu, S.; Triantaphyllou, A.; Antar, M.; Wimpenny, D.; Morton, H.; Beard, M. Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 2015, 95, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Temmler, A.; Liu, D.; Preuβner, J.; Oeser, S.; Luo, J.; Poprawe, R.; Schleifenbaum, J.H. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11. Matter. Des. 2020, 192, 108689. [Google Scholar] [CrossRef]
- Moradi, M.; Sharif, S.; Nasab, S.J.; Moghadam, M.K. Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization. Optik 2020, 224, 165666. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Wen, Z.; Dejun, K. Effects of laser thermal sprayed AlNiCr coating on fatigue performances of S355 structural steel. Int. J. Fatigue 2020, 131, 105359. [Google Scholar] [CrossRef]
- Wu, H.; Kong, D. Effects of laser power on friction-wear performances of laser thermal sprayed Cr3C2-NiCr composite coatings at elevated temperatures. Opt. Laser Technol. 2019, 117, 227–238. [Google Scholar] [CrossRef]
- Zhao, W.; Kong, D. Effects of laser power on immersion corrosion and electrochemical corrosion performances of laser thermal sprayed amorphous AlFeSi coatings. Appl. Surf. Sci. 2019, 481, 161–173. [Google Scholar] [CrossRef]
- Thomas, M.; Jackson, M. The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys. Scr. Mater. 2012, 66, 1065–1068. [Google Scholar] [CrossRef]
- Li, K.; Fu, X.S.; Chen, G.Q.; Zhou, W.L.; Li, Z.Q. Mechanical properties of strengthened surface layer in Ti-6Al-4V alloy induced by wet peening treatment. Trans. Nonferrous Met. Soc. China 2016, 26, 2868–2873. [Google Scholar] [CrossRef]
- Shepard, M.J.; Smith, P.R.; Amer, M.S. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing. J. Mater. Eng. Perform. 2001, 10, 670–678. [Google Scholar] [CrossRef]
- Petrovic, S.; Sibalija, T.; Burzic, M.; Polic, S.; Colic, K.; Milovanovic, D. Picosecond Laser Shock Peening of Nimonic 263 at 1064 nm and 532 nm Wavelength. Metals 2016, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Peyre, P.; Chaieb, I.; Braham, C. FEM calculation of residual stresses induced by laser shock processing in stainless steels. Model. Simul. Mat. Sci. Eng. 2007, 15, 205–221. [Google Scholar] [CrossRef]
- Munther, M.; Martin, T.; Tajyar, A.; Hackel, L.; Beheshti, A.; Davami, K. Laser shock peening and its effects on microstructure and properties of additively manufactured metal alloys: A review. Eng. Res. Express 2020, 2, 022001. [Google Scholar] [CrossRef]
- Sikhamov, R.; Fomin, F.; Klusemann, B.; Kashaev, N. The Influence of Laser Shock Peening on Fatigue Properties of AA2024-T3 Alloy with a Fastener Hole. Metals 2020, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Tatić, T.; Čolić, K.; Sedmak, A.; Mišković, Ž.; Petrović, A. Evaluation of the Locking Compression Plates Stress-Strain Fields. Techn. Gazette 2018, 25, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Čolić, K.; Gubeljak, N.; Burzić, M.; Sedmak, A.; Mijatović, T.; Milovanović, A. Analysis of fracture behaviour of thin s316l stainless steel plates. Struct. Integr. Life 2017, 17, 211–216, UDC: 620.172.24:669.14.018.8. [Google Scholar]
- ARAMIS. Hardware, aramis_hw_en_rev-c, Braunschweig, Germany, 2007, User Information.
- ARAMIS. Software, aramis_v6_1st_en_rev-c, 2007, User Manual.
- MetroPro Surface Texture Parameters. Available online: https://www.lambdaphoto.co.uk/pdfs/Surface_Texture.pdf (accessed on 12 November 2020).
- Peyre, P.; Fabbro, R. Laser shock processing: A review of the physics and applications. Opt. Quantum Electron. 1995, 27, 1213–1229. [Google Scholar] [CrossRef]
- Peyre, P.; Scherpereel, X.; Berthe, L.; Carboni, C.; Fabbro, R.; Beranger, G.; Lemaitre, C. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng. A 2000, 280, 294–302. [Google Scholar] [CrossRef]
- Aircraft Materials. Available online: https://www.aircraftmaterials.com/data/nickel/C263.html (accessed on 17 April 2021).
Laser | Nd:YAG | Nd:YAG |
---|---|---|
Model | EKSPLA | Thunder Art-Quanta System |
Wavelength | 1064 nm | 1064 nm |
Pulse duration | 170 ps | ≤8 ns |
Energy density | 11 J/cm2 | 4.24 J/cm2 |
Spatial beam profile/Mode | Near TEM00 | Near-field (fit to Gaussian) ≥ 0.7 Far-field (fit to Gaussian) ≥ 0.9 |
Repetition rate | 10 Hz | 20 Hz |
Surface Parameters | Before Drilling | Zone Surrounding the Hole after Drilling | ns Laser Action | ps Laser Action |
---|---|---|---|---|
Ra [μm] | 0.41 ± 0.01 | 0.56 ± 0.02 | 0.46 ± 0.01 | 0.33 ± 0.01 |
rms [μm] | 0.54 ± 0.02 | 0.71 ± 0.03 | 0.64 ± 0.03 | 0.42 ± 0.01 |
Elemental Composition | Untreated Sample | Nanosecond Laser Treatment | Picosecond Laser Treatment |
---|---|---|---|
Element | Concentration (%) | Concentration (%) | Concentration (%) |
Mo | 5.92 ± 0.03 | 5.97 ± 0.03 | 5.91 ± 0.04 |
Si | 0.30 ± 0.02 | 0.31 ± 0.05 | 0.36 ± 0.04 |
Ni | 52.41 ± 0.11 | 52.44 ± 0.15 | 52.23 ± 0.19 |
Co | 20.06 ± 0.10 | 20.16 ± 0.11 | 20.06 ± 0.13 |
Fe | 0.69 ± 0.02 | 0.69 ± 0.03 | 0.63 ± 0.03 |
Mn | 0.35 ± 0.04 | 0.35 ± 0.04 | 0.47 ± 0.05 |
Cr | 18.76 ± 0.08 | 18.41 ± 0.09 | 18.55 ± 0.10 |
Ti | 1.76 ± 0.05 | 1.62 ± 0.05 | 1.69 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajčić, B.; Petronić, S.; Čolić, K.; Stević, Z.; Petrović, A.; Mišković, Ž.; Milovanović, D. Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration. Metals 2021, 11, 750. https://doi.org/10.3390/met11050750
Rajčić B, Petronić S, Čolić K, Stević Z, Petrović A, Mišković Ž, Milovanović D. Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration. Metals. 2021; 11(5):750. https://doi.org/10.3390/met11050750
Chicago/Turabian StyleRajčić, Boris, Sanja Petronić, Katarina Čolić, Zoran Stević, Ana Petrović, Žarko Mišković, and Dubravka Milovanović. 2021. "Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration" Metals 11, no. 5: 750. https://doi.org/10.3390/met11050750
APA StyleRajčić, B., Petronić, S., Čolić, K., Stević, Z., Petrović, A., Mišković, Ž., & Milovanović, D. (2021). Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration. Metals, 11(5), 750. https://doi.org/10.3390/met11050750